0.6 V, 116 nW Neural Spike Acquisition IC with Self-Biased Instrumentation Amplifier and Analog Spike Extraction
Abstract
:1. Introduction
2. Neural Spike Acquisition IC
2.1. Ultralow Power Self-Biased CBIA
2.2. Analog NEO-Based Spike Extraction
3. Measurement Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, S.; Liu, L.; Yao, L.; Goh, W.; Gao, Y.; Je, M. A 0.5-V sub-μW/channel neural recording IC with delta-modulation-based spike detection. In Proceedings of the 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC), KaoHsiung, Taiwan, 10–12 November 2014; pp. 189–192. [Google Scholar]
- Han, D.; Zheng, Y.; Rajkumar, R.; Dawe, G.; Je, M. A 0.45 V 100-Channel Neural-Recording IC with Sub-μW Channel Consumption in 0.18 μm CMOS. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 735–746. [Google Scholar] [PubMed]
- Liu, L.; Yao, L.; Zou, X.; Goh, W.; Je, M. Neural recording front-end IC using action potential detection and analog buffer with digital delay for data compression. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 747–750. [Google Scholar]
- Gosselin, B.; Mohamad, S. An ultra low-power CMOS automatic action potential detector. IEEE Trans. Neural. Syst. Rehabil. Eng. 2009, 17, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.; Watkins, P.; Kier, R.; Lovejoy, R.; Black, D.; Greger, B.; Solzbacher, F. A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J. Solid-State Circuits 2007, 42, 123–133. [Google Scholar] [CrossRef]
- Van Helleputte, N.; Konijnenburg, M.; Pettine, J.; Jee, D.; Kim, H.; Morgado, A.; van Wegberg, R.; Torfs, T.; Mohan, R.; Breeschoten, A.; et al. A 345 µW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP. IEEE J. Solid-State Circuits 2015, 50, 230–244. [Google Scholar] [CrossRef]
- Wang, T.Y.; Lai, M.R.; Twigg, C.M.; Peng, S.Y. A fully reconfigurable low-noise biopotential sensing amplifier with 1.96 noise efficiency factor. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Boling, C.S.; Kamboh, A.M.; Mason, A.J. Adaptive threshold neural spike detector using stationary wavelet transform in CMOS. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 946–995. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Ray, G.C. A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans. Biomed. Eng. 1998, 45, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Semmaoui, H.; Drolet, J.; Lakhssassi, A.; Sawan, M. Setting adaptive spike detection threshold for smoothed TEO based on robust statistics theory. IEEE Trans. Biomed. Eng. 2012, 59, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Li, H. Ultra-low-power neural recording microsystem for implantable brain machine interface. In Proceedings of the IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013; pp. 1050–1053. [Google Scholar]
- Gosselin, B.; Ayoub, A.E.; Roy, J.F.; Sawan, M.; Lepore, F.; Chaudhuri, A.; Guitton, D. A Mixed-Signal Multichip Neural Recording Interface with Bandwidth Reduction. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Perez, A.; Ruiz-Amaya, J.; Delgado-Restituto, M.; Rodriguez-Vazquez, A. A Low-Power Programmable Neural Spike Detection Channel with Embedded Calibration and Data Compression. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zou, X.; Goh, W.L.; Ramamoorthy, R.; Dawe, G.; Je, M. 800 nW 43 nV/√Hz neural recording amplifier with enhanced noise efficiency factor. Electron. Lett. 2012, 48, 479–480. [Google Scholar] [CrossRef]
- Wu, J.; Law, M.K.; Mak, P.I.; Martins, R.P. A 2-µW 45-nV/√Hz readout front end with multiple-chopping active-high-pass ripple reduction loop and pseudofeedback DC servo loop. IEEE Trans. Circuits Syst. II Exp. Briefs 2016, 63, 351–355. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Richardson, A.G.; Lucas, T.H.; Van der Spiegel, J. Design of a closed-loop, bidirectional brain machine interface system with energy efficient neural feature extraction and PID control. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 729–742. [Google Scholar] [CrossRef] [PubMed]
Interested Frequency Band | Typical Amplitude | Typical Firing Rate | Remark | |
---|---|---|---|---|
ASSCC 2014 [1] | 300 Hz–10 kHz | a few tens to several hundreds μV | 10–100 fires/s | |
TBCAS 2013 [2] | 300 Hz–10 kHz | 10 μV–1 mV | - | |
EMBC 2013 [3] | 300 Hz–5 kHz | 50 μV–500 μV | - | |
TNSRE 2009 [4] | 100 Hz–10 kHz | 50 μV–500 μV | 10–120 fires/s | Duration of a few ms |
JSSC 2007 [5] | 300 Hz–5 kHz | 50 μV–500 μV | 10–100 fires/s | Duration of 250 μs |
Devices | Value |
---|---|
PM1, PM2 | W/L = 8 μ/10 μ |
PM3, PM4 | W/L = 30 μ/5 μ |
NM1, NM2 | W/L = 0.5 μ/30 μ |
RIN | 35 kΩ |
ROUT (pseudo res.) | 4-bit binary-weighted (LSB unit: W/L = 4 μ/1 μ, approx. 20 MOhm) |
RLPF (pseudo res.) | 2-bit binary-weighted (LSB unit: W/L = 0.5 μ/10 μ, approx. 900 MOhm) |
CLPF | 17.9 pF |
Devices | Value |
---|---|
PM1, PM2, PM5, PM6 | W/L = 0.5 μ/10 μ |
PM3, PM4 | W/L = 0.5 μ/30 μ |
NM1, NM2 | W/L = 1 μ/10 μ |
NM3, NM4 | W/L = 2 μ/30 μ |
CDIFF | 8.95 pF |
PM7, PM8 | W/L = 1 μ/10 μ |
PM9 | W/L = 5 μ/10 μ |
NM5, NM6, NM7, NM8 | W/L = 2 μ/5 μ |
Devices | Value |
---|---|
PM1, PM2, PM3, PM4 | W/L = 5 μ/10 μ |
PM5, PM6 | W/L = 1 μ/10 μ |
NM1, NM2, NM3, NM4 | W/L = 0.5 μ/30 μ |
Sub-Block | Current (nA) |
---|---|
ULPIA using 2-stage CBIA | 23.2 × 2 = 46.4 |
Differentiator | 53.0 |
Multiplier | 71.6 |
Threshold generator | 7.2 |
Comparator | 9.8 |
etc | 5.3 |
Total | 193.3 |
TBCAS 2009 [12] | TBCAS 2012 [13] | EL 2012 [14] | TBCAS 2014 [7] | ASSCC 2014 [1] | TCAS-II 2016 [15] | TBCAS 2017 [16] | This Work | |
---|---|---|---|---|---|---|---|---|
Process (μm) | 0.18 | 0.13 | 0.18 | 0.35 | 0.18 | 0.18 | 0.18 | 0.18 |
Supply voltage (V) | 1.8 | 1.2 | 1 | 2.5 | 0.5 | 1.25 | 1.8 | 0.6 |
IA power (μW) | 8.6 | 1.92 | 0.8 | 0.0825 | 0.7 | 2.125 | 9 | 0.0278 |
Total power/channel (μW) | 23.6 | 2.6 | 1.25 | 56 | 0.116 | |||
Highpass corner freq. (Hz) | 100 | 11.5–167 | 0.2–430 | 0.005–200 | 1 | 0.5 | 0.3 | 102 (programmable, 0.23/53.1/76.7/102/185) |
Lowpass corner freq. (Hz) | 9.2 k | 4.8–9.8 k | 5.8 k | 0.1/1/10 k | 6.8k | 10k | 7k | 1.94 k |
IRN (μVrms) | 5.4 (100–9.2 k) | 3.8 (1–100 k) | 5.71 | 2.8 (0.05–100 Hz) | 5.4 (1–12 k) | 4.5 (0.5–10 k) | 4.57 (0.3–7 k) | 9.37 (for 102 Hz–1.94 kHz) |
NEF | 4.9 | 2.16 | 2.58 | 1.96 | 2.99 | 2.26 | 4.77 | 1.81 |
NEF∙VDD2 | 44.05 | 5.60 | 2.58 | 12.25 | 4.46 | 3.53 | 15.45 | 0.65 |
Spike detection | digital | analog | No | No | analog | No | analog | analog (+spike merging) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.P.; Lee, H.; Ko, H. 0.6 V, 116 nW Neural Spike Acquisition IC with Self-Biased Instrumentation Amplifier and Analog Spike Extraction. Sensors 2018, 18, 2460. https://doi.org/10.3390/s18082460
Kim JP, Lee H, Ko H. 0.6 V, 116 nW Neural Spike Acquisition IC with Self-Biased Instrumentation Amplifier and Analog Spike Extraction. Sensors. 2018; 18(8):2460. https://doi.org/10.3390/s18082460
Chicago/Turabian StyleKim, Jong Pal, Hankyu Lee, and Hyoungho Ko. 2018. "0.6 V, 116 nW Neural Spike Acquisition IC with Self-Biased Instrumentation Amplifier and Analog Spike Extraction" Sensors 18, no. 8: 2460. https://doi.org/10.3390/s18082460
APA StyleKim, J. P., Lee, H., & Ko, H. (2018). 0.6 V, 116 nW Neural Spike Acquisition IC with Self-Biased Instrumentation Amplifier and Analog Spike Extraction. Sensors, 18(8), 2460. https://doi.org/10.3390/s18082460