Highly Sensitive p + n Metal Oxide Sensor Array for Low-Concentration Gas Detection
Abstract
:1. Introduction
2. Experimental Method
3. Results and Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Yamazoe, N.; Shimanoe, K. New perspectives of gas sensor technology. Sens. Actuators B Chem. 2009, 138, 100–107. [Google Scholar] [CrossRef]
- Yamazoe, N. Toward innovations of gas sensor technology. Sens. Actuators B Chem. 2005, 108, 2–14. [Google Scholar] [CrossRef]
- Xiang, Q.; Meng, G.; Zhang, Y.; Xu, J.; Xu, P.; Pan, Q.; Yu, W. Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties. Sens. Actuators B Chem. 2010, 143, 635–640. [Google Scholar] [CrossRef]
- Korotcenkov, G. Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens. Actuators B Chem. 2005, 107, 209–232. [Google Scholar] [CrossRef]
- Han, N.; Tian, Y.J.; Wu, X.F.; Chen, Y.F. Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens. Actuators B Chem. 2009, 138, 228–235. [Google Scholar] [CrossRef]
- Liu, W.; Xu, L.; Sheng, K.; Zhou, X.; Dong, B.; Lu, G.; Song, H. A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection. NPG Asia Mater. 2018, 10, 293–308. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, Y.; Wang, Z.; Yang, L.P.; Wu, X.F.; Han, N.; Chen, Y.F. Synergetic p plus n field-effect transistor circuits for ppb-level xylene detection. IEEE Sens. J. 2018, 18, 3875–3882. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B.K. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens. Actuators B Chem. 2017, 244, 182–210. [Google Scholar] [CrossRef]
- Xing, R.Q.; Xu, L.; Song, J.; Zhou, C.Y.; Li, Q.L.; Liu, D.L.; Song, H.W. Preparation and gas sensing properties of In2O3/Au nanorods for detection of volatile organic compounds in exhaled breath. Sci. Rep. 2015, 5, 10717. [Google Scholar] [CrossRef] [PubMed]
- Kao, K.W.; Hsu, M.C.; Chang, Y.H.; Gwo, S.; Yeh, J.A. A sub-ppm acetone gas sensor for diabetes detection using 10 nm thick ultrathin InN FETs. Sensors 2012, 12, 7157–7168. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.S.; Wang, Z.; Hu, Y.M. Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors 2012, 12, 5517–5550. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.F.; Liu, X.; Bermak, A.; Fan, Z.Y. Self-gating effect induced large performance improvement of ZnO nanocomb gas sensors. ACS Nano 2013, 7, 9318–9324. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.H.; Dong, B.; Xu, L.; Zhang, X.R.; Chen, J.J.; Sun, X.K.; Xu, H.W.; Zhang, T.X.; Bai, X.; Zhang, S.; et al. Three-dimensional ordered ZnO-Fe3O4 inverse opal gas sensor toward trace concentration acetone detection. Sens. Actuators B Chem. 2017, 252, 367–374. [Google Scholar] [CrossRef]
- Shi, J.J.; Cheng, Z.X.; Gao, L.P.; Zhang, Y.; Xu, J.Q.; Zhao, H.B. Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens. Actuators B Chem. 2016, 230, 736–745. [Google Scholar] [CrossRef]
- Xiang, Q.; Meng, G.F.; Zhao, H.B.; Zhang, Y.; Li, H.; Ma, W.J.; Xu, J.Q. Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J. Phys. Chem. C 2010, 114, 2049–2055. [Google Scholar] [CrossRef]
- Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B Chem. 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Han, N.; Wu, X.; Chai, L.; Liu, H.; Chen, Y. Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors. Sens. Actuators B Chem. 2010, 150, 230–238. [Google Scholar] [CrossRef]
- Lee, J.H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B Chem. 2009, 140, 319–336. [Google Scholar] [CrossRef]
- Hu, P.; Yuan, F.L.; Bai, L.Y.; Li, J.L.; Chen, Y.F. Plasma synthesis of large quantities of zinc oxide nanorods. J. Phys. Chem. C 2007, 111, 194–200. [Google Scholar]
- Chen, Y.J.; Zhu, C.L.; Wang, L.J.; Gao, P.; Cao, M.S.; Shi, X.L. Synthesis and enhanced ethanol sensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods. Nanotechnoligy 2009, 20, 045502. [Google Scholar] [CrossRef] [PubMed]
- Yude, W.; Xinghui, W.; Yanfeng, L.; Zhenlai, Z. The n + n combined structure gas sensor based on burnable gases. Solid-State Electron. 2001, 45, 1809–1813. [Google Scholar] [CrossRef]
- Wang, Y.D.; Wu, X.H.; Zhou, Z.L. Novel high sensitivity and selectivity semiconductor gas sensor based on the p + n combined structure. Solid State Electron. 2000, 44, 1603–1607. [Google Scholar] [CrossRef]
- Yang, L.F.; Wang, Y.L.; Wang, Y.D. Study on p + n combined structure semiconductor toluene gas sensing element. Instr. Tech. Sens. 2010, 10, 12–23. [Google Scholar]
- Xie, Z.; Han, N.; Li, W.H.; Deng, Y.Z.; Gong, S.Y.; Wang, Y.; Wu, X.F.; Li, Y.X.; Chen, Y.F. Facet-dependent gas sensing properties of Cu2O crystals. Phys. Status Solidi A 2017, 214, 1600904. [Google Scholar] [CrossRef]
- Wang, J.X.; Yang, J.; Han, N.; Zhou, X.Y.; Gong, S.Y.; Yang, J.F.; Hu, P.; Chen, Y.F. Highly sensitive and selective ethanol and acetone gas sensors based on modified ZnO nanomaterials. Mater. Des. 2017, 121, 69–76. [Google Scholar] [CrossRef]
- Parida, K.M.; Reddy, K.H.; Martha, S.; Das, D.P.; Biswal, N. Fabrication of nanocrystalline LaFeO3: An efficient sol-gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int. J. Hydrog. Energy 2010, 35, 12161–12168. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Z.; Bian, L.; Li, W.; Zhou, X.; Wu, X.; Yang, Z.; Han, N.; Zhang, J.; Chen, Y. Enhanced NO2 sensing property of ZnO by Ga doping and H2 activation. Phys. Status Solidi A 2018, 215, 1700861. [Google Scholar] [CrossRef]
- Han, N.; Chai, L.Y.; Wang, Q.; Tian, Y.J.; Deng, P.Y.; Chen, Y.F. Evaluating the doping effect of Fe, Ti and Sn on gas sensing property of ZnO. Sens. Actuators B Chem. 2010, 147, 525–530. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, Y.; Wang, J.X.; Xie, Z.; Wu, X.F.; Han, N.; Chen, Y.F. Amplifying the signal of metal oxide gas sensors for low concentration gas detection. IEEE Sens. J. 2017, 17, 2841–2847. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Che, H.W.; Gao, J.J.; Wang, Y.L.; She, X.L.; Sun, J.; Gunawan, P.; Zhong, Z.Y.; Su, F.B. Shape-controlled synthesis of Cu2O microparticles and their catalytic performances in the Rochow reaction. Catal. Sci. Technol. 2012, 2, 1207–1212. [Google Scholar] [CrossRef]
- Bendavid, L.I.; Carter, E.A. First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces. J. Phys. Chem. B 2013, 117, 15750–15760. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.L.; Lv, J.; Sun, S.D.; Zhang, X.Z.; Kong, C.C.; Song, X.P.; Yang, Z.M. Facile hydroxyl-assisted synthesis of morphological Cu2O architectures and their shape-dependent photocatalytic performances. New J. Chem. 2014, 38, 4656–4660. [Google Scholar] [CrossRef]
- Guan, L.N.; Pang, H.A.; Wang, J.J.; Lu, Q.Y.; Yin, J.Z.; Gao, F. Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors. Chem. Commun. 2010, 46, 7022–7024. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhou, Z.; Wang, Y. Effects of calcining temperature on the phase structure and the formaldehyde gas sensing properties of CdO-mixed In2O3. Sens. Actuators B Chem. 2008, 135, 219–223. [Google Scholar] [CrossRef]
- Han, N.; Wu, X.; Zhang, D.; Shen, G.; Liu, H.; Chen, Y. CdO activated Sn-doped ZnO for highly sensitive, selective and stable formaldehyde sensor. Sens. Actuators B Chem. 2011, 152, 324–329. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Jiang, Y.; Xiao, F.; Zhao, X.; Xie, Z. Highly Sensitive p + n Metal Oxide Sensor Array for Low-Concentration Gas Detection. Sensors 2018, 18, 2710. https://doi.org/10.3390/s18082710
Luo J, Jiang Y, Xiao F, Zhao X, Xie Z. Highly Sensitive p + n Metal Oxide Sensor Array for Low-Concentration Gas Detection. Sensors. 2018; 18(8):2710. https://doi.org/10.3390/s18082710
Chicago/Turabian StyleLuo, Jianghua, Yishan Jiang, Feng Xiao, Xin Zhao, and Zheng Xie. 2018. "Highly Sensitive p + n Metal Oxide Sensor Array for Low-Concentration Gas Detection" Sensors 18, no. 8: 2710. https://doi.org/10.3390/s18082710
APA StyleLuo, J., Jiang, Y., Xiao, F., Zhao, X., & Xie, Z. (2018). Highly Sensitive p + n Metal Oxide Sensor Array for Low-Concentration Gas Detection. Sensors, 18(8), 2710. https://doi.org/10.3390/s18082710