Design and Evaluation of a MEMS Magnetic Field Sensor-Based Respiratory Monitoring and Training System for Radiotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. MEMS-Based Respiratory Monitoring and Training System
2.2. Measurement of Respiratory Motion
2.3. Position Dependency of Attaching Magnet
3. Results
3.1. Analysis of the Respiratory Signal
3.2. Analysis of Position Dependency of Attaching Magnet
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bucci, M.K.; Bevan, A.; Roach, M. Advances in radiation therapy: Conventional to 3D, to IMRT, to 4D, and beyond. Cancer J. Clin. 2005, 55, 117–134. [Google Scholar] [CrossRef]
- Palma, D.A.; Verbakel, W.F.; Otto, K.; Senan, S. New developments in arc radiation therapy: A review. Cancer Treat. Rev. 2010, 36, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity-modulated radiotherapy: Current status and issues of interest. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 880–914. [Google Scholar] [CrossRef]
- Bhide, S.A.; Nutting, C.M. Recent advances in radiotherapy. BMC Med. 2010, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Hockel, M.; Vaupel, P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 2001, 93, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Tannock, I.F.; Hill, R.P. The Basic Science of Oncology, 2nd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1992; pp. 259–275. ISBN 978-0-071-05316-7. [Google Scholar]
- Fowler, J.F. The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 1989, 62, 679–694. [Google Scholar] [CrossRef] [PubMed]
- Keall, P.J.; Mageras, G.S.; Balter, J.M.; Emery, R.S.; Forster, K.M.; Jiang, S.B.; Ramsey, C.R. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med. Phys. 2006, 33, 3874–3900. [Google Scholar] [CrossRef] [PubMed]
- Britton, K.R.; Starkschall, G.; Tucker, S.L.; Pan, T.; Nelson, C.; Chang, J.Y.; Komaki, R. Assessment of gross tumor volume regression and motion changes during radiotherapy for non–small-cell lung cancer as measured by four-dimensional computed tomography. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Mageras, G.S.; Yorke, E.; De Arruda, F.; Sillanpaa, J.; Rosenzweig, K.E.; Ling, C.C. Observation of interfractional variations in lung tumor position using respiratory gated and ungated megavoltage cone-beam computed tomography. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 1548–1558. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.; Wijesooriya, K.; Dill, S.V.; Keall, P.J. Tumor and normal tissue motion in the thorax during respiration: Analysis of volumetric and positional variations using 4D CT. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Ekberg, L.; Holmberg, O.; Wittgren, L.; Bjelkengren, G.; Landberg, T. What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Radiother. Oncol. 1998, 48, 71–77. [Google Scholar] [CrossRef]
- Brady, L.W.; Yaeger, T.E.; Reiff, J.; Class, R.; Mose, S. Encyclopedia of Radiation Oncology, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 585–693. ISBN 978-3-540-85513-2. [Google Scholar]
- Xi, M.; Liu, M.Z.; Deng, X.W.; Zhang, L.; Huang, X.Y.; Liu, H.; Cui, N.J. Defining internal target volume (ITV) for hepatocellular carcinoma using four-dimensional CT. Radiother. Oncol. 2007, 84, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.H.; Balter, P.; Tutt, T.; Choi, B.; Zhang, J.; Wang, C.; Starkschall, G. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Mah, D.; Hanley, J.; Rosenzweig, K.E.; Yorke, E.; Braban, L.; Ling, C.C.; Mageras, G. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 1175–1185. [Google Scholar] [CrossRef]
- Berson, A.M.; Emery, R.; Rodriguez, L.; Richards, G.M.; Ng, T.; Sanghavi, S.; Barsa, J. Clinical experience using respiratory gated radiation therapy: Comparison of free-breathing and breath-hold techniques. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.H.; Koch, N.; Starkschall, G.; Jacobson, M.; Forster, K.; Liao, Z.; Stevens, C.W. Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: Part II—Margin reduction of internal target volume. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.Y.; Ajlouni, M.; Chen, Q.; Yin, F.F.; Movsas, B. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy. Radiother. Oncol. 2006, 78, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.W.; Sharpe, M.B.; Jaffray, D.A.; Kini, V.R.; Robertson, J.M.; Stromberg, J.S.; Martinez, A.A. The use of active breathing control (ABC) to reduce margin for breathing motion. Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 911–919. [Google Scholar] [CrossRef]
- Bloemen-van Gurp, E.; van der Meer, S.; Hendry, J.; Buijsen, J.; Visser, P.; Fontanarosa, D.; Verhaegen, F. Active breathing control in combination with ultrasound imaging: A feasibility study of image guidance in stereotactic body radiation therapy of liver lesions. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Diaconu, C.; Stephans, K.; Djemil, T.; Videtic, G.; Greskovich, J.; Xia, P. Active Breathing Control Provides an Accurate Method for Stereotactic Body Radiation Therapy of Lung and Liver Tumors. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, S830. [Google Scholar] [CrossRef]
- George, R.; Chung, T.D.; Vedam, S.S.; Ramakrishnan, V.; Mohan, R.; Weiss, E.; Keall, P.J. Audio-visual biofeedback for respiratory-gated radiotherapy: Impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Neicu, T.; Berbeco, R.; Wolfgang, J.; Jiang, S.B. Synchronized moving aperture radiation therapy (SMART): Improvement of breathing pattern reproducibility using respiratory coaching. Phys. Med. Biol. 2006, 51, 617–636. [Google Scholar] [CrossRef] [PubMed]
- Venkat, R.B.; Sawant, A.; Suh, Y.; George, R.; Keall, P.J. Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform. Phys. Med. Biol. 2008, 53, N197–N208. [Google Scholar] [CrossRef] [PubMed]
- Kini, V.R.; Vedam, S.S.; Keall, P.J.; Patil, S.; Chen, C.; Mohan, R. Patient training in respiratory-gated radiotherapy. Med. Dosim. 2003, 28, 7–11. [Google Scholar] [CrossRef]
- Sung, J.W.; Yoon, M.G.; Chung, W.K.; Kim, D.W.; Shin, D.O. Study of the Respiratory Monitoring System by Using the MEMS Acceleration Sensor. Prog. Med. Phys. 2013, 24, 61–67. [Google Scholar] [CrossRef]
- Hwang, S.B.; Park, M.K.; Park, S.W.; Cho, Y.R.; Lee, D.H.; Jung, H.J.; Ji, Y.H.; Kwon, S.I. Development and Utility Evaluation of Portable Respiration Training Device for Image-guided Stereotactic Body Radiation Therapy (SBRT). Prog. Med. Phys. 2014, 25, 264–270. [Google Scholar] [CrossRef]
- Barrett, K.E.; Barman, S.M.; Boitano, S.; Brooks, H. Ganong’s Review of Medical Physiology, 23rd ed.; McGraw-Hill Medical: New York, NY, USA, 2009. [Google Scholar]
- Ono, T.; Takegawa, H.; Ageishi, T.; Takashina, M.; Numasaki, H.; Matsumoto, M.; Teshima, T. Respiratory monitoring with an acceleration sensor. Phys. Med. Biol. 2011, 56, 6279–6289. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.; Yoon, M.; Do Huh, H.; Shin, D.O.; Chung, W.K.; Kim, D.W. Examination of a micro-electro-mechanical system based on a portable respiratory monitoring system. J. Korean Phys. Soc. 2015, 67, 752–756. [Google Scholar] [CrossRef]
- Moon, S.Y.; Sung, J.; Yoon, M.; Chung, M.; Chung, W.K.; Kim, D.W. Evaluation of performance of portable respiratory monitoring system based on micro-electro-mechanical-system for respiratory gated radiotherapy. In Proceedings of the SPIE 9550, San Diego, CA, USA, 9–13 August 2015. [Google Scholar]
- Bae, M.; Lee, S.; Kim, N. Development of a robust and cost-effective 3D respiratory motion monitoring system using the kinect device: Accuracy comparison with the conventional stereovision navigation system. Comput. Methods Prog. Biomed. 2018, 160, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, E.; Snyder, M. Comparative analysis of respiratory motion tracking using Microsoft Kinect v2 sensor. J. Appl. Clin. Med. Phys. 2018, 19, 193–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Shin, E.; Shin, J.S.; Ju, S.G.; Han, Y.; Park, H.C.; Choi, D.H. The clinical implementation of 2D dose distribution QA system for the patient specific respiratory-gated radiotherapy. Korean J. Med. Phys. 2010, 21, 127–136. [Google Scholar]
- Massaroni, C.; Schena, E.; Saccomandi, P.; Morrone, M.; Sterzi, S.; Silvestri, S. Evaluation of optoelectronic plethysmography accuracy and precision in recording displacements during quiet breathing simulation. In Proceedings of the 2015 37th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015; pp. 1291–1294. [Google Scholar]
- Massaroni, C.; Saccomandi, P.; Formica, D.; Presti, D.L.; Caponero, M.A.; Di Tomaso, G.; Schena, E. Design and feasibility assessment of a magnetic resonance-compatible smart textile based on fiber Bragg grating sensors for respiratory monitoring. IEEE Sens. J. 2016, 16, 8103–8110. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, Y.; Jung, Y.-J.; Choi, S.H.; Kim, D.W. Design and Evaluation of a MEMS Magnetic Field Sensor-Based Respiratory Monitoring and Training System for Radiotherapy. Sensors 2018, 18, 2742. https://doi.org/10.3390/s18092742
Oh Y, Jung Y-J, Choi SH, Kim DW. Design and Evaluation of a MEMS Magnetic Field Sensor-Based Respiratory Monitoring and Training System for Radiotherapy. Sensors. 2018; 18(9):2742. https://doi.org/10.3390/s18092742
Chicago/Turabian StyleOh, Yoonjin, Young-Jin Jung, Sang Hyoun Choi, and Dong Wook Kim. 2018. "Design and Evaluation of a MEMS Magnetic Field Sensor-Based Respiratory Monitoring and Training System for Radiotherapy" Sensors 18, no. 9: 2742. https://doi.org/10.3390/s18092742
APA StyleOh, Y., Jung, Y. -J., Choi, S. H., & Kim, D. W. (2018). Design and Evaluation of a MEMS Magnetic Field Sensor-Based Respiratory Monitoring and Training System for Radiotherapy. Sensors, 18(9), 2742. https://doi.org/10.3390/s18092742