Structured-Light-Based System for Shape Measurement of the Human Body in Motion
Abstract
:1. Introduction
2. Previous Works
3. Acquisition System Design
4. Measurement Process
4.1. Single-Frame Processing
- Fringe amplitude map (Am)—favours areas with high fringe contrast, eliminating errors due to incorrect fringe period estimation;
- Period stability map (Sm)—favours areas with stable fringe periods, avoiding areas with local period discontinuities;
- Fringe verticality map (Vm)—favours areas consisting of fringes with locally constant orientations, according to the projected orientation, thus avoiding high curvature areas;
- Border areas map (Bm)—favours areas with the greatest distances to the edges of the object, thus eliminating errors due to surface discontinuities.
- : row and column number, respectively, of the central pixel;
- : row and column number, respectively, of the current pixel;
- : window size;
- : intensity of pixel in the image;
- : vertical and horizontal gradients, respectively, of pixel ;
- : verticality of pixel in the Vm.
- : row and column, respectively, of a pixel;
- : weights of the Bm, Am, Vm and Sm components, respectively;
- : exponents of the Bm, Am, Vm and Sm components, respectively;
- : pixel values in the Bm, Am, Vm and Sm, respectively;
- : quality value of pixel .
- : projected marker index;
- : phase shift.
4.2. Calibration Procedure
5. Validation of the Proposed System
5.1. Initial Validation
- Step 1: A virtual plane was fit to the received cloud of points, that is, the captured model.
- Step 2: The distances between the outermost marker centres on both model diagonals were measured. This distance was determined as the mean of the distances between the points on the outer/inner edges of the outermost markers.
5.2. Validation Using Human Subjects
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Buck, U.; Naether, S.; Räss, B.; Jackowski, C.; Tahli, M.J. Accident or homicide—Virtual crime scene reconstruction using 3D methods. Forensic Sci. Int. 2013, 225, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Se, P.; Jasiobedzki, P. Instant scene modeler for crime scene reconstruction. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 21–23 September 2005. [Google Scholar]
- Adamczyk, M.; Sieniło, M.; Sitnik, R.; Woźniak, A. Hierarchical, three-dimensional measurement system for crime scene documentation. J. Forensic Sci. 2017, 2017, 889–899. [Google Scholar]
- Yastikli, N. Documentation of cultural heritage using digital photogrammetry and laser scanning. J. Cult. Herit. 2007, 8, 423–427. [Google Scholar] [CrossRef]
- Zlot, R.; Bosse, M.; Greenop, K.; Jarzab, Z.; Juckes, E.; Roberts, J. Efficiently capturing large, complex cultural heritage sites with a handheld mobile 3D laser mapping system. J. Cult. Herit. 2014, 15, 670–678. [Google Scholar] [CrossRef]
- Sitnik, R.; Krzesłowski, J.; Mączkowski, G. Archiving shape and appearance of cultural heritage objects using structured light projection and multispectral imaging. Opt. Eng. 2012, 51, 021115. [Google Scholar] [CrossRef]
- Sitnik, R.; Mączkowski, G.; Krzesłowski, J. Calculation methods for digital model creation based on integrated shape, color and angular reflectivity measurement. In Proceedings of the 2010 Euro-Mediterranean Conference: Digital Heritage, Lemessos, Cyprus, 8–13 November 2010. [Google Scholar]
- Treleaven, P.; Wells, J. 3D body scanning and healthcare applications. Computer 2007, 40, 28–34. [Google Scholar] [CrossRef]
- Michoński, J.; Glinkowski, W.; Witkowski, M.; Sitnik, R. Automatic recognition of surface landmarks of anatomical structures of back and posture. J. Biomed. Opt. 2012, 17, 056015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glinkowski, W.; Michoński, J.; Sitnik, R.; Witkowski, M. 3D diagnostic system for anatomical structures detection based on a parameterized method of body surface analysis. In Information Technologies in Biomedicine; Piętka, E., Kawa, J., Eds.; Springer: Berlin, Germany, 2010; Volume 2, pp. 153–164. ISBN 9783642131042. [Google Scholar]
- Schmalz, C.; Forster, F.; Schick, A.; Angelopoulou, E. An endoscopic 3D scanner based on structured light. Med. Image Anal. 2012, 16, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, G.; Georgopoulos, A. Developing and exploiting textured 3D models for a serious game application. In Proceedings of the 2016 8th International Conference on Virtual Worlds and Games for Serious Applications (VS-GAMES), Barcelona, Spain, 7–9 September 2016. [Google Scholar]
- Szabó, C.; Korečko, Š.; Sobota, B. Processing 3D scanner data for virtual reality. In Proceedings of the 2010 10th International Conference on Intelligent Systems Design an Applications, Cairo, Egypt, 29 November–1 December 2010. [Google Scholar]
- Ebrahim, M.A.B. 3D laser scanners’ techniques overview. Int. J. Sci. Res. 2015, 4, 323–331. [Google Scholar]
- Human Solution Informational Material. Available online: http://www.human-solutions.com/fashion/front_content.php?idcat=813&lang=7 (accessed on 27 June 2018).
- Marshall, G.F.; Stutz, G.E. Handbook of Optical and Laser Scanning, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 9781439808795. [Google Scholar]
- Schaller, C.; Penne, J.; Hornegger, J. Time-of-Flight sensor for respiratory motion gating. Int. J. Med. Phys. Res. Pract. 2008, 35, 3090–3093. [Google Scholar] [CrossRef] [PubMed]
- Geng, J. Structured-light 3D surface imaging: A tutorial. Adv. Opt. Photonics 2011, 3, 128–160. [Google Scholar] [CrossRef]
- Dunn, S.M.; Keizer, R.L.; Yu, J. Measuring the area and volume of the human body with structured light. IEEE Trans. Syst. Man Cybern. 1989, 19, 1350–1364. [Google Scholar] [CrossRef]
- Bregler, C.; Hertzmann, A.; Biermann, H. Recovering non-rigid 3D shape from image streams. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, SC, USA, 13–15 June 2000. [Google Scholar] [Green Version]
- Dellaert, F.; Seitz, S.; Thorpe, C.; Thrun, S. Structure from motion without correspondence. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, SC, USA, 13–15 June 2000. [Google Scholar]
- Wei, Q.; Shan, J.; Cheng, H.; Yu, Z.; Lijuan, B.; Haimei, Z. A method of 3D human-motion capture and reconstruction based on depth information. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016. [Google Scholar]
- Ceseracciu, E.; Sawacha, Z.; Cobelli, C. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: Proof of concept. PLoS ONE 2014, 9, e87640. [Google Scholar] [CrossRef] [PubMed]
- Sagawa, R.; Ota, Y.; Yagi, Y.; Furukawa, R.; Asada, N. Dense 3D reconstruction method using a single pattern for fast moving object. In Proceedings of the IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 27 September–4 October 2009. [Google Scholar]
- Zhang, Z.H. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques. Opt. Lasers Eng. 2012, 50, 1097–1106. [Google Scholar] [CrossRef]
- Griesser, A.; Koninckx, T.P.; Van Gool, L. Adaptive real-time 3D acquisition and contour tracking within a multiple structure light system. In Proceedings of the 12th Pacific Conference on Computer Graphics and Applications, Seoul, Korea, 6–8 October 2004. [Google Scholar]
- Lenar, J.; Witkowski, M.; Carbone, V.; Kolk, S.; Adamczyk, M.; Sitnik, R.; van der Krogt, M.; Verdonschot, N. Lower body kinematics based on a multidirectional four-dimensional structured light measurement. J. Biomed. Opt. 2013, 18, 56014. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Kohli, P.; Mitra, N.J. Dynamic SfM: Detecting scene changes from image pairs. Comput. Graph. Forum 2015, 34, 177–189. [Google Scholar] [CrossRef]
- Mouragnon, E.; Lhuillier, M.; Dhome, M.; Dekeyser, F.; Sayd, P. Generic and real-time structure from motion using local bundle adjustment. Image Vis. Comput. 2009, 27, 1178–1193. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, L.A.; Mkhitaryan, A.; Mateus, D.; Navab, N. Estimating human 3D pose from Time-of-Flight images based on geodesic distances and optical flow. In Proceedings of the Face and Gesture 2011, Santa Barbara, CA, USA, 21–25 March 2011. [Google Scholar]
- Zhang, L.; Sturm, J.; Cremers, D.; Lee, D. Real-time human motion tracking using multiple depth cameras. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012. [Google Scholar]
- Gipsman, A.; Rauschert, L.; Daneshvar, M.; Knott, P. Evaluating the reproducibility of motion analysis scanning of the spine during walking. Adv. Med. 2014, 2014, 721829. [Google Scholar] [CrossRef] [PubMed]
- Betsch, M.; Wild, M.; Johnstone, B.; Jungbluth, P.; Hakimi, M.; Kühlmann, B.; Rapp, W. Evaluation of a novel spine and surface topography system for dynamic spinal curvature analysis during gait. PLoS ONE 2013, 8, e70581. [Google Scholar] [CrossRef] [PubMed]
- Pons-Moll, G.; Romero, J.; Mahmood, N.; Black, M.J. Dyna: A model of dynamic human shape in motion. ACM Trans. Graph. TOG 2015, 34, 120. [Google Scholar] [CrossRef]
- Zhang, C.; Pujades, S.; Black, M.; Pons-Moll, G. Detailed, accurate, human shape estimation from clothed 3D scan sequences. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Pachoulakis, I.; Kapetanakis, K. Augmented reality platforms for virtual fitting rooms. Int. J. Multimed. Appl. 2012, 4, 35–46. [Google Scholar] [CrossRef]
- Microsoft Informational Material. Available online: https://developer.microsoft.com/en-us/windows/kinect//hardware (accessed on 27 June 2018).
- DIERS International GmbH Informational Material. Available online: http://diers.eu/en/products/spine-posture-analysis/diers-formetric-4d/ (accessed on 27 June 2018).
- Brahme, A.; Nyman, P.; Skatt, B. 4D laser camera for accurate patient positioning collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedure. Med. Phys. 2008, 35, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
- Collet, A.; Chuang, M.; Sweeney, P.; Gillett, D.; Evseev, D.; Calabrese, D.; Hoppe, H.; Kirk, A.; Sullivan, S. High-quality streamable free-viewpoint video. ACM Trans. Graph. 2015, 34, 69. [Google Scholar] [CrossRef]
- Point Grey Informational Material. Available online: https://eu.ptgrey.com/grasshopper3-23-mp-mono-usb3-vision-sony-pregius-imx174 (accessed on 27 June 2018).
- Casio Information Material. Available online: https://www.casio.com/products/projectors/slim-projectors/xj-a242 (accessed on 27 June 2018).
- Sitnik, R. Four-dimensional measurement by a single-frame structure light method. Appl. Opt. 2009, 48, 3344–3354. [Google Scholar] [CrossRef] [PubMed]
- Bergland, G.D. A guided tour of the fast Fourier transform. IEEE Spectr. 1969, 6, 41–52. [Google Scholar] [CrossRef]
- Takeda, M. Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: An overview. Ind. Metrol. 1990, 1, 79–99. [Google Scholar] [CrossRef]
- Ghiglia, D.C.; Pritt, M.D. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software, 1st ed.; Wiley-Interscience: Hoboken, NJ, USA, 1998; ISBN 9780471249351. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Sitnik, R. New method of structure light measurement system calibration based on adaptive and effective evaluation of 3-D phase distribution. Opt. Meas. Syst. Ind. Insp. IV 2005, 5856, 109–118. [Google Scholar]
- VDI/VDE 2617-6: Accuracy of CMMs—Guideline for the Application of ISO 10360 to CMMs with Optical Distance Sensors. Available online: https://www.vdi.de/uploads/tx_vdirili/pdf/9778569.pdf (accessed on 27 June 2018).
- Markiewicz, Ł.; Witkowski, M.; Sitnik, R.; Mielicka, E. 3D anthropometric algorithms for the estimation of measurements required for specialized garment design. Expert Syst. Appl. 2017, 85, 366–385. [Google Scholar] [CrossRef]
Technique | Advantages | Disadvantages |
---|---|---|
Structured Light |
|
|
Structure from Motion |
|
|
Time of Flight |
|
|
Laser Triangulation |
|
|
Amount of Data | Acquisition Frequency | Equipment Cost | Marker-Less System | |
---|---|---|---|---|
4DBODY | + | + | + | + |
3dMD system | + | +/- | - | + |
DIERS International GmbH system | - | +/- | +/- | + |
System proposed by Collet et al. | + | +/- | - | + |
Microsoft Kinect 2.0 | - | - | + | + |
VICON | - | + | +/- | - |
Rotation Speed [rpm] | ||||
---|---|---|---|---|
0.0 | 4.0 | 9.0 | 14.0 | |
Average RMS error of plane fitting [mm] | 0.17 | 0.22 | 0.25 | 0.23 |
Average RMS error of the distance between the outermost marker centres [mm] | 0.21 | 0.27 | 0.23 | 0.23 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liberadzki, P.; Adamczyk, M.; Witkowski, M.; Sitnik, R. Structured-Light-Based System for Shape Measurement of the Human Body in Motion. Sensors 2018, 18, 2827. https://doi.org/10.3390/s18092827
Liberadzki P, Adamczyk M, Witkowski M, Sitnik R. Structured-Light-Based System for Shape Measurement of the Human Body in Motion. Sensors. 2018; 18(9):2827. https://doi.org/10.3390/s18092827
Chicago/Turabian StyleLiberadzki, Paweł, Marcin Adamczyk, Marcin Witkowski, and Robert Sitnik. 2018. "Structured-Light-Based System for Shape Measurement of the Human Body in Motion" Sensors 18, no. 9: 2827. https://doi.org/10.3390/s18092827
APA StyleLiberadzki, P., Adamczyk, M., Witkowski, M., & Sitnik, R. (2018). Structured-Light-Based System for Shape Measurement of the Human Body in Motion. Sensors, 18(9), 2827. https://doi.org/10.3390/s18092827