A Homogeneous Breast Phantom Measurement System with an Improved Modified Microwave Imaging Antenna Sensor
Abstract
:1. Introduction
2. Antenna Sensor Design Structure
3. Parametric Study
4. Antenna Sensor Performance Measurement
4.1. Frequency Domain Performance
4.2. Time Domain Performance
5. Homogenous Phantom Development and Measurement
6. Microwave Imaging System Setup
7. Microwave Imaging Results and Discussions
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Time Domain Performance
Appendix B. NFD and Q Factor Analysis
References
- Wang, L. Microwave Sensors for Breast Cancer Detection. Sensors 2018, 18, 655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Microwave Imaging for Ultra-Wideband Antenna Based Cancer Detection. Ph.D. Thesis, The University of Edinburgh, Edinburgh, UK, 2015. [Google Scholar]
- Bahrami, H.; Porter, E.; Santorelli, A.; Gosselin, B.; Popovic, M.; Rusch, L. Flexible sixteen monopole antenna array for microwave breast cancer detection. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3775–3778. [Google Scholar]
- Sachs, J.; Ley, S.; Just, T.; Chamaani, S.; Helbig, M. Differential Ultra-Wideband Microwave Imaging: Principle Application Challenges. Sensors 2018, 18, 2136. [Google Scholar] [CrossRef] [PubMed]
- Abbak, M.; Çayören, M.; Akduman, I. Microwave breast phantom measurements with a cavity-backed Vivaldi antenna. IET Microw. Antennas Propag. 2014, 8, 1127–1133. [Google Scholar] [CrossRef]
- Islam, M.T.; Islam, M.M.; Samsuzzaman, M.; Faruque, M.R.I.; Misran, N. A negative index metamaterial-inspired UWB antenna with an integration of complementary SRR and CLS unit cells for microwave imaging sensor applications. Sensors 2015, 15, 11601–11627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fear, E.C.; Johnston, R.H. Cross—Vivaldi antenna for breast tumor detection. Microw. Opt. Technol. Lett. 2009, 51, 275–280. [Google Scholar] [CrossRef]
- Islam, M.M.; Islam, M.T.; Faruque, M.R.I.; Samsuzzaman, M.; Misran, N.; Arshad, H. Microwave imaging sensor using compact metamaterial UWB antenna with a high correlation factor. Materials 2015, 8, 4631–4651. [Google Scholar] [CrossRef] [PubMed]
- Foroutan, F.; Nikolova, N.K. Active Sensor for Microwave Tissue Imaging with Bias-Switched Arrays. Sensors 2018, 18, 1447. [Google Scholar] [CrossRef] [PubMed]
- Jafari, H.; Deen, J.; Hranilovic, S.; Nikolova, N. Co-polarised and cross-polarised antenna arrays for breast, cancer detection. IET Microw. Antennas Propag. 2007, 1, 1055–1058. [Google Scholar] [CrossRef]
- Alzabidi, M.A.; Aldhaeebi, M.A.; Elshafiey, I. Development of UWB Vivaldi antenna for microwave imaging. In Proceedings of the 2013 Saudi International Electronics, Communications and Photonics Conference, Fira, Greece, 27–30 April 2013; pp. 1–4. [Google Scholar]
- Moosazadeh, M. High-Gain Antipodal Vivaldi Antenna Surrounded by Dielectric for Wideband Applications. IEEE Trans. Antennas Propag. 2018, 66, 4349–4352. [Google Scholar] [CrossRef]
- Mahmud, M.; Islam, M.T.; Samsuzzaman, M.; Kibria, S.; Misran, N. Design and parametric investigation of directional antenna for microwave imaging application. IET Microw. Antennas Propag. 2016, 11, 770–778. [Google Scholar] [CrossRef]
- Teni, G.; Zhang, N.; Qiu, J.; Zhang, P. Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 417–420. [Google Scholar] [CrossRef]
- Islam, M.M.; Islam, M.T.; Samsuzzaman, M.; Faruque, M.R.I.; Misran, N.; Mansor, M.F. A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications. Materials 2015, 8, 392–407. [Google Scholar] [CrossRef] [PubMed]
- Nassar, I.T.; Weller, T.M. A novel method for improving antipodal Vivaldi antenna performance. IEEE Trans. Antennas Propag. 2015, 63, 3321–3324. [Google Scholar] [CrossRef]
- Wu, B.; Ji, Y.; Fang, G. Design and measurement of compact tapered slot antenna for UWB microwave imaging radar. In Proceedings of the 2009 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009. [Google Scholar]
- He, S.H.; Shan, W.; Fan, C.; Mo, Z.C.; Yang, F.H.; Chen, J.H. An improved Vivaldi antenna for vehicular wireless communication systems. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1505–1508. [Google Scholar]
- Pandey, G.; Verma, H.; Meshram, M. Compact antipodal Vivaldi antenna for UWB applications. Electron. Lett. 2015, 51, 308–310. [Google Scholar] [CrossRef]
- Wang, Y.W.; Wang, G.M.; Zong, B.F. Directivity improvement of Vivaldi antenna using double-slot structure. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1380–1383. [Google Scholar] [CrossRef]
- Natarajan, R.; George, J.V.; Kanagasabai, M.; Shrivastav, A.K. A compact antipodal Vivaldi antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1557–1560. [Google Scholar] [CrossRef]
- De Oliveira, A.M.; Perotoni, M.B.; Kofuji, S.T.; Justo, J.F. A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1334–1337. [Google Scholar] [CrossRef]
- Biswas, B.; Ghatak, R.; Poddar, D. A Fern Fractal Leaf Inspired Wideband Antipodal Vivaldi Antenna for Microwave Imaging System. IEEE Trans. Antennas Propag. 2017, 65, 6126–6129. [Google Scholar] [CrossRef]
- Mohammed, B.; Abbosh, A.M.; Sharpe, P. Planar array of corrugated tapered slot antennas for ultrawideband biomedical microwave imaging system. Int. J. RF Microw. Comput. Aided Eng. 2013, 23, 59–66. [Google Scholar] [CrossRef]
- Chiappe, M.; Gragnani, G.L. Vivaldi antennas for microwave imaging: Theoretical analysis and design considerations. IEEE Trans. Instrum. Meas. 2006, 55, 1885–1891. [Google Scholar] [CrossRef]
- Song, H.; Sasada, S.; Kadoya, T.; Okada, M.; Arihiro, K.; Xiao, X.; Kikkawa, T. Detectability of Breast Tumor by a Hand-held Impulse-Radar Detector: Performance Evaluation and Pilot Clinical Study. Sci. Rep. 2017, 7, 16353. [Google Scholar] [CrossRef] [PubMed]
- Porter, E.; Kirshin, E.; Santorelli, A.; Coates, M.; Popovic, M. Time-domain multistatic radar system for microwave breast screening. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 229–232. [Google Scholar] [CrossRef]
- Kikkawa, T.; Toya, A.; Kubota, S.; Hafiz, M.; Azhari, A.; Sasaki, N. IR-UWB-CMOS circuits for breast cancer detection. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 1758–1760. [Google Scholar]
- Porter, E.; Santorelli, A.; Coates, M.; Popović, M. An experimental system for time-domain microwave breast imaging. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 2906–2910. [Google Scholar]
- Kwon, S.; Lee, H.; Lee, S. Image enhancement with Gaussian filtering in time-domain microwave imaging system for breast cancer detection. Electron. Lett. 2016, 52, 342–344. [Google Scholar] [CrossRef]
- Kwon, S.; Lee, S. Instantaneous microwave imaging with time-domain measurements for breast cancer detection. Electron. Lett. 2013, 49, 639–641. [Google Scholar] [CrossRef]
- Porter, E.; Santorelli, A.; Popović, M. Breast monitoring via time-domain microwave radar: Early clinical trial study. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 6601–6604. [Google Scholar]
- Porter, E.; Coates, M.; Popović, M. An early clinical study of time-domain microwave radar for breast health monitoring. IEEE Trans. Biomed. Eng. 2016, 63, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Fhager, A.; Persson, M.; Linner, P.; Zirath, H. Accuracy evaluation of ultrawideband time domain systems for microwave imaging. IEEE Trans. Antennas Propag. 2011, 59, 4279–4285. [Google Scholar] [CrossRef]
- Bourqui, J.; Okoniewski, M.; Fear, E.C. Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Trans. Antennas Propag. 2010, 58, 2318–2326. [Google Scholar] [CrossRef]
- Chamaani, S.; Mirtaheri, S.A.; Abrishamian, M.S. Improvement of time and frequency domain performance of antipodal Vivaldi antenna using multi-objective particle swarm optimization. IEEE Trans. Antennas Propag. 2011, 59, 1738–1742. [Google Scholar] [CrossRef]
- Greenberg, M.C.; Virga, K.L. Characterization and design methodology for the dual exponentially tapered slot antenna. In Proceedings of the 1999 IEEE Antennas and Propagation Society International Symposium, Orlando, FL, USA, 11–16 July 1999; pp. 88–91. [Google Scholar]
- Natarajan, R.; George, J.V.; Kanagasabai, M.; Lawrance, L.; Moorthy, B.; Rajendran, D.B.; Alsath, M.G.N. Modified antipodal Vivaldi antenna for ultra-wideband communications. IET Microw. Antennas Propag. 2016, 10, 401–405. [Google Scholar] [CrossRef]
- Islam, M.T.; Mahmud, M.Z.; Misran, N.; Takada, J.I.; Cho, M. Microwave breast phantom measurement system with compact side slotted directional antenna. IEEE Access 2017, 5, 5321–5330. [Google Scholar] [CrossRef]
- Seewattanapon, S.; Akkaraekthalin, P. A broadband complex permittivity probe using stepped coaxial line. J. Electromagn. Anal. Appl. 2011, 3, 312. [Google Scholar] [CrossRef]
- Meaney, P.M.; Gregory, A.P.; Epstein, N.R.; Paulsen, K.D. Microwave open-ended coaxial dielectric probe: Interpretation of the sensing volume re-visited. BMC Med. Phys. 2014, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Piladaeng, N.; Angkawisittpan, N.; Homwuttiwong, S. Determination of relationship between dielectric properties, compressive strength, and age of concrete with rice husk ash using planar coaxial probe. Meas. Sci. Rev. 2016, 16, 14–20. [Google Scholar] [CrossRef]
- Alwan, E.A.; Kiourti, A.; Volakis, J.L. Indium tin oxide film characterization at 0.1–20 GHz using coaxial probe method. IEEE Access 2015, 3, 648–652. [Google Scholar] [CrossRef]
- Jossinet, J.; Schmitt, M. A review of parameters for the bioelectrical characterization of breast tissue. Ann. N. Y. Acad. Sci. 1999, 873, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Bahramiabarghouei, H.; Porter, E.; Santorelli, A.; Gosselin, B.; Popović, M.; Rusch, L.A. Flexible 16 antenna array for microwave breast cancer detection. IEEE Trans. Biomed. Eng. 2015, 62, 2516–2525. [Google Scholar] [CrossRef] [PubMed]
- Moosazadeh, M.; Kharkovsky, S.; Case, J.T.; Samali, B. UWB antipodal vivaldi antenna for microwave imaging of construction materials and structures. Microw. Opt. Technol. Lett. 2017, 59, 1259–1264. [Google Scholar] [CrossRef]
- Akhter, Z.; Akhtar, M. Hemisphere lens-loaded Vivaldi antenna for time domain microwave imaging of concealed objects. J. Electromagn. Waves Appl. 2016, 30, 1183–1197. [Google Scholar] [CrossRef]
- Quintero, G.; Zurcher, J.-F.; Skrivervik, A.K. System fidelity factor: A new method for comparing UWB antennas. IEEE Trans. Antennas Propag. 2011, 59, 2502–2512. [Google Scholar]
- Mavridis, G.A.; Anagnostou, D.E.; Chryssomallis, M.T. Evaluation of the quality factor, q, of electrically small microstrip-patch antennas. IEEE Antennas Propag. Mag. 2011, 53, 216–224. [Google Scholar] [CrossRef]
- K Amineh, R.; Trehan, A.; Nikolova, N.K. TEM horn antenna for ultra-wide band microwave breast imaging. Prog. Electromagn. Res. 2009, 13, 59–74. [Google Scholar] [CrossRef]
Parameters | mm | Parameters | mm |
---|---|---|---|
L | 40 | GS | 8 |
W | 40 | Gt | 35 |
PW | 9 | Gf | 25.5 |
PL | 12 | Gd | 20 |
GW | 9 | Wf | 1.4 |
GL | 12 | T1, T2, T3, T4, T5, T6 | 0.5 |
h | 1.6 |
Different Modifications | Operating Bandwidth (GHz) | Peak Realized Gain (dBi) |
---|---|---|
Basic | 3.01–5.31 | 5.62 |
Patch slotted | 2.90–5.12 | 6.33 |
Ground slotted | 3.01–5.36 | 5.54 |
Proposed | 3.01–11 | 7.06 |
Material | Quantity | Purpose | |||
---|---|---|---|---|---|
Fatty Phantom | Tumor | Skin | Muscle | ||
Distilled water | 420 mL | 420 mL | 80 mL | 420 mL | Solvent |
Polyethylene powder | 500 g | 43 g | - | 100 g | Modifying electrical permittivity |
Agar | 20 g | 20 g | 5.88 g | 20 g | Mechanical strength |
NaCl | 2.3 g | 28.3 g | - | 22.5 g | Modifying electrical conductivity |
Xanthan gum | 6.25 g | 6.25 g | 7 g | 6.25 | Thickener |
Sodium dehydroacetate monohydrate | 0.25 g | 0.25 g | 0.25 | Preservative | |
Safflower oil | - | - | 14 mL | Modification of electric conductivity | |
Propylene glycol | - | - | 7 g | Modification of electric conductivity | |
Formalin | - | - | 0.3 mL | Rising melting temperature of agar-gelatin and phantom stabilizing | |
Detergent | - | - | 0.3 g | Surfactant |
Ref. No. | Size (mm2) λ0 × λ0 | Type of Antenna | Operating Freq. (GHz) | Gain (dBi) | Applications | Observations |
---|---|---|---|---|---|---|
[5] | 63 × 51 0.52 × 0.42 | Vivaldi | 2.5–8.5 | 8.5 | Microwave breast imaging | Comparative large dimension, low gain at a lower frequency and no measured imaging results |
[17] | 75 × 75 0.125 × 0.125 | Vivaldi | 0.5–4.5 | 7 | Microwave radar imaging | Unidirectional radiation with large dimension and imaging results are not characterized |
[39] | 88 × 75 0.4λ × 0.5λ | Vivaldi | 1.54–7 | 8.5 | Microwave breast imaging | Complex feed structure with large size, but directional radiation and good gain |
[46] | 100 × 53.19 0.66 × 0.35 | Antipodal Vivaldi | 2–27 | 7 | Microwave imaging | Unidirectional properties obtained. Dimension is very large. Unavailability of the measured imaging results |
[47] | 110.3 × 100 | Lens-loaded Vivaldi | 1–14 | <3 dB at lower freq. (2 GHz) | Microwave imaging | Large dimension. Low Gain at lower frequency with omnidirectional radiation |
Proposed | 40 × 40 0.40 × 0.40 | Bbalanced slotted antipodal Vivaldi Antenna | 3.01–11 | 7.1 | Microwave breast imaging | Compact dimension with broad impedance bandwidth, a directional radiation pattern with high gain, high fidelity factor, a homogenous phantom with skin layer and imaging system development with tumor detection |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.T.; Samsuzzaman, M.; Islam, M.T.; Kibria, S.; Singh, M.J. A Homogeneous Breast Phantom Measurement System with an Improved Modified Microwave Imaging Antenna Sensor. Sensors 2018, 18, 2962. https://doi.org/10.3390/s18092962
Islam MT, Samsuzzaman M, Islam MT, Kibria S, Singh MJ. A Homogeneous Breast Phantom Measurement System with an Improved Modified Microwave Imaging Antenna Sensor. Sensors. 2018; 18(9):2962. https://doi.org/10.3390/s18092962
Chicago/Turabian StyleIslam, Mohammad Tariqul, Md. Samsuzzaman, Md. Tarikul Islam, Salehin Kibria, and Mandeep Jit Singh. 2018. "A Homogeneous Breast Phantom Measurement System with an Improved Modified Microwave Imaging Antenna Sensor" Sensors 18, no. 9: 2962. https://doi.org/10.3390/s18092962
APA StyleIslam, M. T., Samsuzzaman, M., Islam, M. T., Kibria, S., & Singh, M. J. (2018). A Homogeneous Breast Phantom Measurement System with an Improved Modified Microwave Imaging Antenna Sensor. Sensors, 18(9), 2962. https://doi.org/10.3390/s18092962