PEDOT:PSS-Based Temperature-Detection Thread for Wearable Devices
Abstract
:1. Introduction
2. Design and Fabrication
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lymberis, A.; Paradiso, R. Smart fabrics and interactive textile enabling wearable personal applications: R&D state of the art and future challenges. In Proceedings of the 30th Annual international IEEE EMBS Conference, Vancouver, BC, Canada, 20–24 August 2008; pp. 5270–5273. [Google Scholar]
- Poon, C.C.Y.; Zhang, Y.-T.; Bao, S.D. A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health. IEEE Commun. Mag. 2006, 44, 73–81. [Google Scholar] [CrossRef]
- Poon, C.C.Y.; Lo, B.P.; Yuce, M.R.; Alomainy, A.; Hao, Y. Body sensor networks: In the era of big data and beyond. IEEE Rev. Biomed. Eng. 2015, 8, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Pentland, A. Looking at people: Sensing for ubiquitous and wearable computing. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 107–119. [Google Scholar] [CrossRef]
- Curto, V.F.; Angelov, N.; Coyle, S.; Byrne, R.; Hughes, S.; Moyna, N.; Diamond, D.; Benito-Lopez, F. “My sweat my health”: Real time sweat analysis using wearable micro-fluidic devices. In Proceedings of the 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, Dublin, Ireland, 23–26 May 2011; pp. 196–197. [Google Scholar]
- Ceccarelli, A.; Bondavalli, A.; Figueiras, J.; Malinowsky, B.; Wakula, J.; Brancati, F.; Dambra, C.; Seminatore, A. Design and implementation of real-time wearable devices for a safety-critical track warning system. In Proceedings of the IEEE 14th International Symposium on High-Assurance Systems Engineering, Omaha, NE, USA, 25–27 October 2012; pp. 147–154. [Google Scholar]
- Lee, Y.-D.; Chung, W.-Y. Wireless sensor network-based wearable smart shirt for ubiquitous health and activity monitoring. Sens. Actuators B Chem. 2009, 140, 390–395. [Google Scholar] [CrossRef]
- Mitchener, J. What we’ll wear. Eng. Technol. 2008, 3, 74. [Google Scholar] [CrossRef]
- Benight, S.J.; Wang, C.; Tok, J.B.H.; Bao, Z. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 2013, 38, 1961–1977. [Google Scholar] [CrossRef]
- Winterhalter, C.A.; Teverovsky, J.; Wilson, P.; Slade, J.; Horowitz, W.; Tierney, E.; Sharma, V. Development of electronic textiles to support networks, communications, and medical applications in future U.S. military protective clothing systems. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 402–406. [Google Scholar] [CrossRef]
- Langereis, G.; de Voogd-Claessen, L.; Spaepen, A.; Siplia, A.; Rotsch, C.; Linz, T. Context: Contactless sensors for body monitoring incorporated in textiles. In Proceedings of the IEEE International Conference on Portable Information Devices, Orlando, FL, USA, 25–29 May 2007; pp. 1–5. [Google Scholar]
- Curone, D.; Dudnik, G.; Loriga, G.; Luprano, J.; Magenes, G.; Paradiso, R.; Tognetti, A.; Bonfiglio, A. Smart garments for safety improvement of emergency/disaster operators. In Proceedings of the Engineering in Medicine and Biology Society. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 3962–3965. [Google Scholar]
- Dittmar, A.; Meffre, R.; Oliveira, F.D.; Gehin, C.; Delhomme, G. Wearable medical devices using textile and flexible technologies for ambulatory monitoring. In Proceedings of the IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2005; pp. 7161–7164. [Google Scholar]
- Casson, A.J.; Yates, D.C.; Smith, S.J.M.; Duncan, J.S.; Rodriguez-Villegas, E. Wearable electroencephalography. IEEE Eng. Med. Biol. Mag. 2010, 29, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Led, S.; Fernandez, J.; Serrano, L. Design of wearable device for ECG continuous monitoring using wireless technology. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; pp. 3318–3321. [Google Scholar]
- Coyle, S.; Wu, Y.; Lau, K.-T.; Wallace, G.G.; Diamond, D. Fabric-based fluid handing platform with integrated analytical capability. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; p. 6450. [Google Scholar]
- Moustafa, H.; Kenn, H.; Sayrafian, K.; Scanlon, W.; Zhang, Y. Mobile wearable communications. IEEE Wirel. Commun. 2015, 22, 10–11. [Google Scholar] [CrossRef]
- Zysset, C.; Kinkeldei, T.W.; Munzenrieder, N.; Cherenack, K.; Troster, G. Integration method for electronics in woven textiles. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 1107–1117. [Google Scholar] [CrossRef]
- Locci, S.; Maccioni, M.; Orgiu, E.; Bonfiglio, A. Woven electronics: A new perspective for wearable technology. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 3940–3973. [Google Scholar]
- Ding, Y.; Invernale, M.A.; Sotzing, G.A. Conductivity trends of PEDOT-PSS impregnated fabric and the effect of conductivity on electrochromic textile. ASC Appl. Mater. Interfaces 2010, 2, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Friedel, B.; Keivanidis, P.E.; Brenner, T.J.K.; Abrusci, A.; McNeill, C.R.; Friend, R.H.; Greenham, N.C. Effects of layer thickness and annealing of PEDOT:PSS layers in organic photodetectors. Macromolecules 2009, 42, 6741–6747. [Google Scholar] [CrossRef]
- Pingree, L.S.C.; MacLeod, B.A.; Ginger, D.S. The changing face of PEDOT:PSS films: Substrate, bias, and processing effects on vertical charge transport. J. Phys. Chem. C 2008, 112, 7922–7927. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, M.; Kim, H. Annealing temperature effect of hole-collecting polymeric nanolayer in polymer solar cells. Macromol. Res. 2008, 16, 185–188. [Google Scholar] [CrossRef]
- Kemerink, M.; Timpanaro, S.; de Kok, M.M.; Meulenkamp, E.A.; Touwslager, F.J. Three-dimensional inhomogeneities in PEDOT:PSS Films. J. Phys. Chem. B 2004, 108, 18820–18825. [Google Scholar] [CrossRef]
- Greczynski, G.; Kugler, T.; Salaneck, W.R. Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy. Thin Solid Films 1999, 354, 129–135. [Google Scholar] [CrossRef]
- Le, J.; Yan, L.; Zhao, Y.; Zha, F.; Wang, Q.; Lei, Z. One-step fabrication of robust fabrics with both-faced superhydrophobicity for the separation and capture of oil from water. Phys. Chem. Chem. Phys. 2015, 17, 6451–6457. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Kim, J.Y.; Yoon, T.H.; Choi, S.-Y. Bipolar resistive switching characteristics of poly (3,40ethylene-dioxythiophene): Poly (styrenesulfonate) thin film. Curr. Appl. Phys. 2010, 10, 46–49. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, R.; Wei, G. Preparation of mesoporous silica thin films on polystyrene substrate by electrochemically induced sol–gel technique. Surf. Coat. Technol. 2010, 204, 2187–2192. [Google Scholar] [CrossRef]
- Chen, Q.; Li, Q.; Lin, J. Synthesis of Janus composite particles by the template of dumbbell-like silica/polystyrene. Mater. Chem. Phys. 2011, 128, 377–382. [Google Scholar] [CrossRef]
- Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 2014, 19, 4256–4283. [Google Scholar] [CrossRef] [PubMed]
- Daoud, W.A.; Xin, J.H.; Szeto, Y.S. Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers. Sens. Actuators B 2005, 109, 329–333. [Google Scholar] [CrossRef]
- Elshchner, A.; Kirchmeyer, S.; Lovenich, W.; Merker, U.; Reuter, K. PEDOT:PSS. PEDOT, Principles and Applications of an Intrinsically Conductive Polymer; CRC Press: Boca Raton, FL, USA, 2011; pp. 113–166. ISBN 9781420069112. [Google Scholar]
- Husain, M.D.; Kennon, R. Preliminary Investigations into the development of textile based temperature sensor for healthcare applications. Fibers 2013, 1, 2–10. [Google Scholar] [CrossRef]
- Sibinski, M.; Jakubowska, M.; Sloma, M. Flexible temperature sensors on fibers. Sensors 2010, 10, 7934–7946. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-W.; Han, D.-C.; Shin, H.-J.; Yeom, S.-H.; Ju, B.-K.; Lee, W. PEDOT:PSS-Based Temperature-Detection Thread for Wearable Devices. Sensors 2018, 18, 2996. https://doi.org/10.3390/s18092996
Lee J-W, Han D-C, Shin H-J, Yeom S-H, Ju B-K, Lee W. PEDOT:PSS-Based Temperature-Detection Thread for Wearable Devices. Sensors. 2018; 18(9):2996. https://doi.org/10.3390/s18092996
Chicago/Turabian StyleLee, Jin-Woo, Dong-Cheul Han, Han-Jae Shin, Se-Hyeok Yeom, Byeong-Kwon Ju, and Wanghoon Lee. 2018. "PEDOT:PSS-Based Temperature-Detection Thread for Wearable Devices" Sensors 18, no. 9: 2996. https://doi.org/10.3390/s18092996
APA StyleLee, J. -W., Han, D. -C., Shin, H. -J., Yeom, S. -H., Ju, B. -K., & Lee, W. (2018). PEDOT:PSS-Based Temperature-Detection Thread for Wearable Devices. Sensors, 18(9), 2996. https://doi.org/10.3390/s18092996