Wireless Channel Propagation Characteristics and Modeling Research in Rice Field Sensor Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Equipment
2.2. Experiment Design
2.3. Test Items
3. Data Analysis and Methods
3.1. Calculation of Path Loss
3.2. Path Loss Models
3.2.1. Free Space Model
3.2.2. Two-Ray Model
3.2.3. One-Slope Log-Distance Model
3.2.4. Modified Two-Slope Log-Distance Model
3.3. Model Evaluation Standards
4. Results and Analysis
4.1. Analysis of Variation Trends of Wireless Channel Propagation in Rice Fields
4.2. Path Loss Model Results and Analysis
4.2.1. Free Space Model Results and Analysis
4.2.2. Two-Ray Model Results and Analysis
4.2.3. One-Slope Log-Distance Model Results and Analysis
4.2.4. Modified Two-Slope Log-Distance Model Results and Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhen, L.I.; Hong, T.S.; Wang, N. Review on wireless sensor network technology applications in precision agriculture. J. Hunan Agric. Univ. 2011, 37, 576–580. [Google Scholar]
- Sun, Y.W.; Shen, M.X.; Lu, M.Z.; Lin, X.Z.; Xiong, Y.J.; Liu, L.S. Research status and prospect of wireless sensor network in agriculture. Acta Agric. Zhejiangensis 2011, 23, 639–644. [Google Scholar]
- Rappaport, T.S.; Maccartney, G.R.; Samimi, M.K.; Sun, S. Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Trans. Commun. 2015, 63, 3029–3056. [Google Scholar] [CrossRef]
- Darr, M.J.; Zhao, L. Modeling path loss in confined animal feeding operations. In Proceedings of the 2008 ASABE Annual International Meeting, Providence, RI, USA, June 29–July 2 2008. [Google Scholar]
- Rizman, Z.I.; Jusof, K.; Rais, S.S.; Bakar, H.H.H.; Nair, G.K.S.; Ho, Y.K. Microwave signal propagation on oil palm trees: measurements and analysis. Int. J. Smart Sens. Intell. Syst. 2011, 4, 388–401. [Google Scholar] [CrossRef]
- Hebel, M.A.; Tate, R.F.; Watson, D.G. Results of Wireless Sensor Network Transceiver Testing for Agricultural Applications. In Proceedings of the 2008 ASAE Annual Meeting, Minneapolis, MN, USA 17–20 June 2007. [Google Scholar]
- Gong, Z.; Zhang, W.; Liu, Y.; Wu, Z.; Xie, Q.; Zhou, X. Application Status and Existing Problems of Wireless Sensor Network in Agriculture. Guizhou Agric. Sci. 2016, 44, 144–147. [Google Scholar]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Akyildiz, I.F. On Capacity of Magnetic Induction-based Wireless Underground Sensor Networks. In Proceedings of the IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 370–378. [Google Scholar]
- Bilgin, B.E.; Gungor, V.C. Adaptive error control in wireless sensor networks under harsh smart grid environments. Sens. Rev. 2012, 32, 203–211. [Google Scholar] [CrossRef]
- Jie, S.; Yao, D.Y.; Huang, H.Q.; Ma, K.; Liu, H.T. Measurement and analysis of radio channel model for near-ground wireless sensor network. Opt. Precis. Eng. 2008, 16, 141–149. [Google Scholar]
- Liu, H.; Wang, M.H.; Meng, Z.J.; Zhang, M.; Li, H. Performance assessment of short-range radio propagation in crop fields. J. Jiangsu Univ. 2010, 31, 1–5. [Google Scholar]
- Li, S.; Gao, H.; Jiang, J. Impact of antenna height on propagation characteristics of 2.4 GHz wireless channel in wheat fields. Trans. Chin. Soc. Agri. Eng. 2009, 25, 184–189. [Google Scholar]
- Zhang, H.; Zhang, J. Path loss modeling for 2.4 GHz wireless channel in wheat fields. Trans. Chin. Soc. Agri. Mach. 2014, 45, 291–296. [Google Scholar]
- Yoo, J.H.; Lee, J.H.; Cho, S.H. A propagation model in 2.4 GHz ISM band using IEEE 802.15.4 systems. In Proceedings of the 17th Asia Pacific Conference on Communications, Sabah, Malaysia, 2–5 October 2011; pp. 339–343. [Google Scholar]
- Jang, S.; Park, L.; Na, W.; Dao, N.N.; Eom, J.H.; Kim, Y.H.; Lee, J.W.; Cho, S. Optimization of ISM Band interference coordination between WLAN and IEEE 802.15.4 using NAV on PAN Coordinator. In Proceedings of the Eighth International Conference on Ubiquitous and Future Networks, Vienna, Austria, 5–8 July 2016; pp. 688–690. [Google Scholar]
- Lu, G. Experiment and analysis of WSN channel propagation characteristics in complex environment. Internet Things Technol. 2017, 7, 48–51. [Google Scholar]
- Moravek, P.; Dan, K.; Simek, M.; Jelinek, M.; Girbau, D.; Lazaro, A. Investigation of radio channel uncertainty in distance estimation in wireless sensor networks. Telecommun. Syst. 2013, 52, 1549–1558. [Google Scholar] [CrossRef]
- Jia, H.E.; Jiang, T. Determination of Empirical Formula for 2.4 GHz Signal Propagation Path Loss Model in Overwater Environment. Radio Eng. 2012, 42, 23–25. [Google Scholar]
- Vougioukas, S.; Anastassiu, H.T.; Regen, C.; Zude, M. Influence of foliage on radio path losses (PLs) for wireless sensor network (WSN) planning in orchards. Biosyst. Eng. 2013, 114, 454–465. [Google Scholar] [CrossRef]
- Li, J.; Wang, F. Modeling for wireless channel transmission loss characteristics under rapeseed growth big field environment. Appl. Res. Comput. 2017, 34, 1189–1194. [Google Scholar]
- Yen, R.Y.; Liu, H.Y.; Tsai, C.S. Frequency tracking by method of least squares combined with channel estimation for OFDM over mobile wireless channels. Eurasip J. Wirel. Commun. Networking 2012, 2012, 192. [Google Scholar] [CrossRef] [Green Version]
- Sheng, X. Study of propagation model in mobile communications. Master’s Thesis, University of Posts and Telecommunications, Nanjing, China, June 2008. [Google Scholar]
- Wang, D.; Song, L.; Kong, X.; Zhang, Z. Near-Ground Path Loss Measurements and Modeling for Wireless Sensor Networks at 2.4 GHz. Int. J. Distrib. Sens. Netw. 2012, 2012, 1018–1020. [Google Scholar] [CrossRef]
- Qiu, L.; Qin, J.F. 2.4 GHz Wireless Channel Transmission Characteristics of Wireless Sensor Network in Intelligent Irrigation System. Hubei Agric. Sci. 2015, 9, 2242–2244. [Google Scholar]
- Miao, Y.S.; Wu, H.R.; Li, F.F.; Zhu, L. Study of wheat farmland multipath fading channel modeling based on statistical distribution. Acta Electron. Sin. 2016, 44, 665–672. [Google Scholar]
- Ma, J. Diverity or irregularity of wave propagation on the interface—the reasons for the deviation of the target body in the reflection and refraction wave interpretation. Prog. Geophys. 2017, 32, 217–223. [Google Scholar]
- Qi, E.; Zhang, Z.; Li, C. Path Loss Modeling for 2.4 GHz Wireless Channel in Campus Leisure Area Environment. Inf. Commun. 2017, 11, 20–22. [Google Scholar]
- Du, Y. Influence of field environment on channel propagation characteristics and modeling of Wireless Sensor Networks. Mod. Agric. 2017, 4, 66–67. [Google Scholar]
- Li, D. Introduction to Internet of Things in Agriculture; Beijing Science Press: Beijing, China, 2012; pp. 151–154. [Google Scholar]
- Ge, W.J.; Zhao, C.J. The state-of-the-art and developing strategies of agricultural Internet of Thing. Trans Chin. Soc. Agric. Mach. 2014, 45, 2–8. [Google Scholar]
- He, Y.; Nie, P.C.; Liu, F. Advancement and trend of Internet of Things in agriculture and sensing instrument. Trans Chin. Soc. Agric. Mach. 2013, 44, 216–226. [Google Scholar]
- González-Briones, A.; Castellanos-Garzón, J.A.; Martín, Y.M.; Prieto, J.; Corchado, J.M. A Framework for Knowledge Discovery from Wireless Sensor Networks in Rural Environments: A Crop Irrigation Systems Case Study. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef]
Developmental Stage | Parameter K | Path Loss Factor, n | ||||||
---|---|---|---|---|---|---|---|---|
0.8 m | 1.2 m | 1.6 m | 2.0 m | 0.8 m | 1.2 m | 1.6 m | 2.0 m | |
Tillering stage | −5.30 | −13.08 | −15.31 | −15.23 | 3.79 | 3.67 | 3.62 | 3.58 |
Jointing stage | −4.94 | −13.59 | −12.92 | −11.78 | 3.93 | 3.79 | 3.75 | 3.65 |
Grain filling stage | −4.89 | −15.91 | −12.07 | −9.86 | 4.19 | 3.93 | 3.84 | 3.66 |
Parameter, K | Path Loss Factor, n | Breakpoint Distances, d/m | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8 m | 1.2 m | 1.6 m | 2.0 m | 0.8 m | 1.2 m | 1.6 m | 2.0 m | 0.8 m | 1.2 m | 1.6 m | 2.0 m | ||
Tillering Stage | Before Breakpoint | −8.89 | −8.98 | −6.70 | −7.72 | 3.87 | 3.57 | 3.25 | 3.24 | 231 | 238 | 168 | 203 |
After Breakpoint | −26.71 | −57.51 | −53.38 | −62.21 | 4.47 | 5.54 | 5.25 | 5.52 | |||||
Jointing Stage | Before Breakpoint | −12.78 | −0.94 | −3.36 | −3.36 | 3.47 | 3.00 | 3.14 | 3.09 | 189 | 154 | 112 | 98 |
After Breakpoint | 2.67 | −10.14 | −16.45 | −29.48 | 4.26 | 3.80 | 3.91 | 4.30 | |||||
Grain Filling Stage | Before Breakpoint | −12.13 | −15.09 | −4.84 | −4.96 | 3.02 | 4.15 | 3.40 | 3.35 | 140 | 147 | 112 | 119 |
After Breakpoint | 17.46 | −23.67 | −18.81 | -10.93 | 4.31 | 4.50 | 4.12 | 3.71 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Li, W.; Zhu, Y.; Tian, Y.; Pang, F.; Cao, W.; Ni, J. Wireless Channel Propagation Characteristics and Modeling Research in Rice Field Sensor Networks. Sensors 2018, 18, 3116. https://doi.org/10.3390/s18093116
Gao Z, Li W, Zhu Y, Tian Y, Pang F, Cao W, Ni J. Wireless Channel Propagation Characteristics and Modeling Research in Rice Field Sensor Networks. Sensors. 2018; 18(9):3116. https://doi.org/10.3390/s18093116
Chicago/Turabian StyleGao, Zhenran, Weijing Li, Yan Zhu, Yongchao Tian, Fangrong Pang, Weixing Cao, and Jun Ni. 2018. "Wireless Channel Propagation Characteristics and Modeling Research in Rice Field Sensor Networks" Sensors 18, no. 9: 3116. https://doi.org/10.3390/s18093116
APA StyleGao, Z., Li, W., Zhu, Y., Tian, Y., Pang, F., Cao, W., & Ni, J. (2018). Wireless Channel Propagation Characteristics and Modeling Research in Rice Field Sensor Networks. Sensors, 18(9), 3116. https://doi.org/10.3390/s18093116