Let’s Talk about TEX—Understanding Consumer Preferences for Smart Interactive Textile Products Using a Conjoint Analysis Approach
Abstract
:1. Introduction
- Gives insights in users’ weighting of decision-relevant acceptance factors referring to two prototypical interactive textile products,
- Identifies user segments differing in their decision and acceptance behavior influenced by user diversity,
- Derives user segment-tailored design and communication guidelines for interactive textiles.
2. Related Work
2.1. Smart and Interactive Textiles
2.2. Technology Acceptance
2.3. Technology Acceptance of Interactive Textiles
2.4. Research Gaps and Research Aims
- Evaluates different aspects of textile input devices (connectivity, usability, ease of cleaning, input modality, and feature range). To understand the relation among these evaluation criteria and the relative importance of the criteria for the acceptance decision, we use an experimental setting which allows determining their trade-offs.
- Uses two interactive textile products for everyday use: clothes and furnitures. Both products are widely known and used, have thus a high reach for many consumers and allow a broad understanding of the acceptance and perceived usefulness of textile products. To understand individual acceptance patterns, all participants evaluated both product types (randomized order).
- Explores user diversity in order to describe the commonalities and differences within and across different user types. On the base of the response patterns, user profiles were formed (by user segmentation procedures) and referred to demographics (age, gender) but also attitudinal factors (technical self-efficacy, affinity to textiles, and the experience with smart textiles).
3. Method and Materials
3.1. Key Characteristics of the Conjoint Analysis Approach
3.2. Selection of the Relevant Attributes
3.3. Experimental Design
3.4. Structure of Online Questionnaire
3.5. Data Collection and Description of the Sample
3.6. Data Analysis
4. Results
4.1. Relative Importance Scores
4.2. Part-Worth Utilities: Meaning of Attribute Levels
4.3. Segmentation of Users Groups: Adopters, Undecided, and Rejecters
4.3.1. User Groups of the Smart Armchair
4.3.2. User Groups of the Smart Jacket
5. Discussion
5.1. Relevant Criteria for the Evaluation of Smart Interactive Textiles
5.2. Insights in User-Specific Evaluations of Smart Interactive Textiles
5.2.1. General Guidelines
5.2.2. User Segment-Specific Guidelines
5.2.3. Product-Specific Guidelines
5.3. Limitations and Further Research
5.3.1. Sample-Related Limitations
5.3.2. Methodology-Related Limitations
5.3.3. Future Work
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Exemplary Choice Task
Appendix B. Scales
Item | M | SD | ITC |
---|---|---|---|
I inform myself about new textiles, even if I have no intention to buy them. | 2.73 | 1.44 | 0.644 |
I love owning new textiles. | 3.75 | 1.48 | 0.715 |
I’m thrilled when new textiles come onto the market. | 2.98 | 1.37 | 0.692 |
There are many textiles in my household that I find pleasant. | 4.40 | 1.09 | 0.556 |
I have an emotional bond to some of my textiles. For example, I have a favorite t-shirt. | 4.17 | 1.45 | 0.418 |
Attributes | Smart Jacket | Smart Armchair | Inference Statistics | |||||
---|---|---|---|---|---|---|---|---|
Levels | % | SD | % | SD | F(1323) | p | ||
relative importance | ease of cleaning | 33.8 | 13.1 | 27.0 | 12.5 | 83.488 | <0.01 | |
feature range | 21.6 | 11.8 | 22.9 | 10.5 | 3.592 | 0.059; n.s. | ||
usability | 18.2 | 7.8 | 19.2 | 9.6 | 28.078 | <0.01 | ||
connectivity | 17.8 | 10.2 | 21.3 | 11.7 | 3.168 | 0.076; n.s. | ||
input modality | 8.5 | 5.6 | 9.6 | 6.3 | 6.715 | <0.05 | ||
Average Utilities | SD | Average Utilities | SD | F(1323) | p | |||
part-worth utilities | ease of cleaning | special cleaning | −92.5 | 47.8 | −74.0 | 46.1 | 42.621 | <0.01 |
additional expense | 29.3 | 22.8 | 23.0 | 22.3 | 19.932 | <0.01 | ||
usual cleaning | 63.1 | 43.3 | 51.1 | 33.2 | 26.133 | <0.01 | ||
feature range | complex | 15.4 | 49.5 | 29.0 | 43.6 | 24.420 | <0.01 | |
extended | 20.6 | 21.8 | 17.5 | 29.2 | 2.775 | 0.097; n.s. | ||
conventional | −35.9 | 58.9 | -46.6 | 50.0 | 10.164 | <0.01 | ||
connectivity | high (network) | 8.1 | 48.2 | 14.9 | 55.3 | 5.400 | <0.05 | |
low (port) | 15.8 | 27.7 | 16.8 | 25.5 | 0.344 | 0.558; n.s. | ||
not connected | −23.9 | 42.4 | −31.7 | 52.3 | 9.309 | <0.01 | ||
usability | difficult | -45.1 | 38.6 | −47.8 | 40.3 | 1.349 | 0.246; n.s. | |
middle | 23.1 | 21.0 | 28.3 | 23.3 | 13.656 | <0.01 | ||
easy | 22.0 | 27.5 | 19.5 | 30.7 | 2.097 | 0.149; n.s. | ||
input modality | complex | −15.2 | 21.2 | −17.6 | 22.5 | 2.815 | 0.094; n.s. | |
extended | 5.1 | 13.6 | 5.3 | 16.2 | 0.036 | 0.849; n.s. | ||
simple | 10.1 | 20.0 | 12.3 | 23.0 | 2.343 | 0.127; n.s. |
Adopter | Undecided | Rejecter | Inference Statistics | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Attributes | Levels | % | SD | % | SD | % | SD | F(1323) | p | |
relative importance | ease of cleaning | 25.1 | 13.0 | 27.9 | 12.0 | 27.0 | 12.0 | 1.257 | 0.286; n.s. | |
feature range | 23.7 | 9.7 | 23.4 | 10.4 | 21.3 | 11.3 | 1.348 | 0.261; n.s. | ||
usability | 20.4 | 9.4 | 19.0 | 9.8 | 18.3 | 9.5 | 0.783 | 0.458; n.s. | ||
connectivity | 22.2 | 12.4 | 20.5 | 11.3 | 22.1 | 11.9 | 0.988 | 0.374; n.s. | ||
input modality | 8.6 | 5.4 | 9.2 | 5.6 | 11.2 | 7.8 | 4.064 | <0.05 | ||
input modality | 8.5 | 5.6 | 9.6 | 6.3 | 6.715 | <0.05 | ||||
Average Utilities | SD | Average Utilities | SD | Average Utilities | SD | F(1323) | p | |||
part-worth utilities | ease of cleaning | special cleaning | −70.4 | 44.5 | −78.8 | 42.6 | 49.8 | 40.3 | 1.061 | 0.142; n.s. |
additional expense | 23.0 | 23.4 | 25.5 | 21.6 | 17.8 | 22.0 | 3.383 | <0.05 | ||
usual cleaning | 47.4 | 30.7 | 53.3 | 30.2 | −67.6 | 53.1 | 0.897 | 0.409; n.s. | ||
feature range | complex | 38.5 | 37.4 | 34.1 | 39.1 | 10.4 | 51.7 | 11.123 | <0.01 | |
extended | 20.4 | 24.3 | 18.6 | 30.6 | 12.9 | 30.3 | 1.510 | 0.223; n.s. | ||
conventional | −58.8 | 39.5 | −52.7 | 46.1 | −23.2 | 58.1 | 13.481 | <0.01 | ||
connectivity | high (network) | 21.9 | 54.9 | 21.3 | 50.3 | −4.3 | 61.1 | 6.951 | <0.01 | |
low (port) | 20.9 | 26.9 | 16.1 | 26.4 | 14.5 | 22.0 | 1.367 | 0.256; n.s. | ||
not connected | −42.9 | 47.6 | −37.3 | 45.5 | −10.2 | 62.5 | 10.203 | <0.01 | ||
usability | difficult | −53.3 | 41.4 | −47.5 | 39.5 | −43.4 | 40.9 | 1.186 | 0.307; n.s. | |
middle | 23.5 | 19.9 | 23.6 | 19.9 | 21.8 | 23.9 | 0.219 | 0.804; n.s. | ||
easy | 24.2 | 29.0 | 19.2 | 30.0 | 16.1 | 33.1 | 1.385 | 0.252; n.s. | ||
input modality | complex | −11.8 | 21.3 | −17.3 | 20.4 | −23.4 | 26.0 | 5.407 | <0.01 | |
extended | 4.9 | 16.2 | 5.5 | 15.9 | 5.2 | 16.9 | 0.036 | 0.964; n.s. | ||
simple | 6.9 | 21.7 | 11.8 | 21.4 | 18.2 | 26.1 | 4.954 | <0.01 |
Adopter | Undecided | Rejecter | Inference Statistics | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Attributes | Levels | % | SD | % | SD | % | SD | F(1323) | p | |
relative importance | ease of cleaning | 31.1 | 12.2 | 35.3 | 13.2 | 33.6 | 13.5 | 2.755 | 0.065; n.s. | |
feature range | 23.0 | 11.2 | 21.1 | 11,4 | 21,2 | 13,1 | 0.744 | 0.476; n.s. | ||
usability | 18.3 | 8.5 | 18.0 | 7.3 | 18.4 | 8.3 | 0.065 | 0.937; n.s. | ||
connectivity | 19.6 | 11.4 | 17.4 | 9.7 | 16.9 | 10.0 | 1.655 | 0.193; n.s. | ||
input modality | 7.9 | 6.9 | 8.1 | 4.9 | 9.8 | 5.4 | 3.226 | <0.05 | ||
input modality | 8.5 | 5.6 | 9.6 | 6.3 | 6.715 | <0.05 | ||||
Average Utilities | SD | Average Utilities | SD | Average Utilities | SD | F(1323) | p | |||
part-worth utilities | ease of cleaning | special cleaning | −83.5 | 51.7 | −98.5 | 44.2 | −89.1 | 49.6 | 2.902 | 0.056; n.s. |
additional expense | 33.5 | 21.8 | 29.8 | 21.9 | 24.5 | 24.6 | 3.257 | <0.05 | ||
usual cleaning | 50.1 | 43.6 | 68.7 | 40.3 | 64.6 | 46.4 | 5.061 | <0.01 | ||
feature range | complex | 36.5 | 37.5 | 20.9 | 45.0 | −14.6 | 53.7 | 1.996 | 0.138; n.s. | |
extended | 23.2 | 19.1 | 21.4 | 21.8 | 16.7 | 23.7 | 27.613 | <0.01 | ||
conventional | −59.7 | 43.8 | −42.3 | 53.3 | −2.2 | 66.5 | 24.326 | <0.01 | ||
connectivity | high (network) | 24.6 | 49.1 | 9.0 | 45.4 | −8.7 | 47.5 | 10.387 | <0.01 | |
low (port) | 13.4 | 23.3 | 17.3 | 29.2 | 15.2 | 28.4 | 0.540 | 0.583; n.s. | ||
not connected | −38.1 | 40.6 | −26.3 | 39.1 | −8.7 | 47.5 | 12.742 | <0.01 | ||
usability | difficult | −45.7 | 39.9 | −47.5 | 34.5 | −40.1 | 44.3 | 1.020 | 0.362; n.s. | |
middle | 23.5 | 19.9 | 23.6 | 19.9 | 21.8 | 23.9 | 0.219 | 0.804; n.s. | ||
easy | 22.2 | 28.9 | 23.9 | 25.2 | 18.3 | 30.1 | 1.143 | 0.320; n.s. | ||
input modality | complex | −11.7 | 23.7 | −15.3 | 19.7 | −18.2 | 21.4 | 1.896 | 0.152; n.s. | |
extended | 5.8 | 13.7 | 5.4 | 13.1 | 3.8 | 14.6 | 0.543 | 0.582; n.s. | ||
simple | 6.0 | 22.6 | 9.9 | 17.3 | 14.4 | 21.7 | 3.699 | <0.05 |
References
- Moore, G.E. Cramming more components onto integrated circuits. Electronics 1965, 86, 114–117. [Google Scholar] [CrossRef]
- Weiser, M. The Computer for the 21st Century. Sci. Am. 1991, 265, 94–104. [Google Scholar] [CrossRef]
- Aarts, E.H.L. Ambient Intelligence: A Multimedia Perspective. IEEE MultiMedia 2004, 11, 12–19. [Google Scholar] [CrossRef]
- Aarts, E.H.L. True Visions: The Emergence of Ambient Intelligence; Encarnação, J.L., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S. History of Dyed Textiles; MIT Press: Cambridge, MA, USA, 1970. [Google Scholar]
- Kvavadze, E.; Bar-Yosef, O.; Belfer-Cohen, A.; Boaretto, E.; Jakeli, N.; Matskevich, Z.; Meshveliani, T. 30,000-year-old Wild Flax Fibers. Science 2009, 325, 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, E.R.; Orth, M. Smart Fabric, or “Wearable Clothing”. In Proceedings of the 1st IEEE International Symposium on Wearable Computers, Cambridge, MA, USA, 13–14 October 1997; IEEE Computer Society: Washington, DC, USA, 1997; p. 167. [Google Scholar]
- Post, E.R.; Orth, M.; Russo, P.R.; Gershenfeld, N. E-broidery: Design and Fabrication of Textile-based Computing. IBM Syst. J. 2000, 39, 840–860. [Google Scholar] [CrossRef]
- Cherenack, K.; van Pieterson, L. Smart textiles: Challenges and opportunities. J. Appl. Phys. 2012, 112. [Google Scholar] [CrossRef]
- Castano, L.M.; Flatau, A.B. Smart Fabric Sensors and e-textile Technologies: A Review. Smart Mater. Struct. 2014, 23, 053001. [Google Scholar] [CrossRef]
- Poupyrev, I.; Gong, N.W.; Fukuhara, S.; Karagozler, M.E.; Schwesig, C.; Robinson, K.E. Project Jacquard: Interactive Digital Textiles at Scale. In Proceedings of the Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 4216–4227. [Google Scholar]
- Rekimoto, J. GestureWrist and GesturePad: Unobtrusive Wearable Interaction Devices. In Proceedings of the 5th IEEE International Symposium on Wearable Computers, Zurich, Switzerland, 8–9 October 2001; IEEE Computer Society: Washington, DC, USA, 2001; pp. 21–27. [Google Scholar]
- Karrer, K.; Glaser, C.; Clemens, C. Technikaffinität erfassen—Der Fragebogen TA-EG [Measuring Affinity to Technology]. ZMMS Berliner Werkstatt Mensch-Maschine-Syst. 2009, 22, 196–201. [Google Scholar]
- Karrer, T.; Wittenhagen, M.; Lichtschlag, L.; Heller, F.; Borchers, J. Pinstripe: Eyes-free Continuous Input on Interactive Clothing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New York, NY, USA, 7–12 May 2011; pp. 1313–1322. [Google Scholar]
- Hamdan, N.A.H.; Heller, F.; Wacharamanotham, C.; Thar, J.; Borchers, J. Grabrics: A Foldable Two-Dimensional Textile Input Controller. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; ACM: New York, NY, USA, 2016; pp. 2497–2503. [Google Scholar]
- Saponas, T.S.; Harrison, C.; Benko, H. PocketTouch: Through-fabric Capacitive Touch Input. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, 16–19 October 2011; ACM: New York, NY, USA, 2011; pp. 303–308. [Google Scholar]
- Rus, S.; Braun, A.; Kuijper, A. E-Textile Couch: Towards Smart Garments Integrated Furniture. In Proceedings of the 13th European Conference on Ambient Intelligence, Malaga, Spain, 26–28 April 2017; Braun, A., Wichert, R., Maña, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 214–224. [Google Scholar]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research; Addison-Wesley Publishing Company, Inc.: Reading, MA, USA, 1975. [Google Scholar]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar]
- Perry, A.; Malinin, L.; Sanders, E.; Li, Y.; Leigh, K. Explore consumer needs and design purposes of smart clothing from designers’ perspectives. Int. J. Fashion Des. Technol. Educ. 2017, 11, 372–380. [Google Scholar] [CrossRef]
- Van Heek, J.; Schaar, A.K.; Trevisan, B.; Bosowski, P.; Ziefle, M. User requirements for wearable smart textiles. Does the usage context matter (medical vs. sports)? In Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, Oldenburg, Germany, 20–23 May 2014. [Google Scholar]
- Hildebrandt, J.; Brauner, P.; Ziefle, M. Smart Textiles as Intuitive and Ubiquitous User Interfaces for Smart Homes. In Human Computer Interaction International—Human Aspects of IT for the Aged Population; Zhou, J., Salvendy, G., Eds.; Springer: Cham, Switzerland, 2015; pp. 423–434. [Google Scholar]
- Ziefle, M.; Brauner, P.; Heidrich, F.; Möllering, C.; Lee, H.Y.; Armbrüster, C. Understanding Requirements for Textile Input Devices: Individually-tailored Interfaces Within Home Environments. In Proceedings of the 8th International Conference on Universal Access in Human-Computer Interaction (UAHCI 2014), Heraklion, Crete, Greece, 22–27 June 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 589–600. [Google Scholar]
- Brauner, P.; van Heek, J.; Martina, Z. Age, Gender, and Technology Attitude as Factors for Acceptance of Smart Interactive Textiles in Home Environments—Towards a Smart Textile Technology Acceptance Model. In Proceedings of the International Conference on ICT for Aging Well and e-Health (ICT4AWE 2017), Porto, Portugal, 28–29 April 2017; Science and Technology Publications: Setúbal, Portugal, 2017; pp. 53–56. [Google Scholar]
- Brauner, P.; van Heek, J.; Ziefle, M.; Hamdan, N.A.H.; Borchers, J. Interactive FUrniTURE: Evaluation of Smart Interactive Textile Interfaces for Home Environments. In Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces, Brighton, UK, 17–20 October 2017; ACM: New York, NY, USA, 2017; pp. 151–160. [Google Scholar]
- Luce, R.D.; Tukey, J.W. Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement. J. Math. Psychol. 1964, 1, 1–27. [Google Scholar] [CrossRef]
- Arning, K.; Kowalewski, S.; Ziefle, M. Health Concerns Versus Mobile Data Needs: Conjoint Measurement of Preferences for Mobile Communication Network Scenarios. Hum. Ecol. Risk Assess. Int. J. 2014, 20, 1359–1384. [Google Scholar] [CrossRef]
- Ryan, M.; Farrar, S. Using conjoint analysis to elicit preferences for health care. BMJ 2000, 320, 1530–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aristides, M.; Chen, J.; Schulz, M.; Williamson, E.; Clarke, S.; Grant, K. Conjoint analysis of a new Chemotherapy: Willingness to pay and preference for the features of raltitrexed versus standard therapy in advanced Colorectal Cancer. PharmacoEconomics 2002, 20, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Salm, S.; Hille, S.L.; Wüstenhagen, R. What are retail investors’ risk-return preferences towards renewable energy projects? A choice experiment in Germany. Energy Policy 2016, 97, 310–320. [Google Scholar] [CrossRef]
- Zaunbrecher, B.S.; Arning, K.; Falke, T.; Ziefle, M. No pipes in my backyard?: Preferences for local district heating network design in Germany. Energy Res. Soc. Sci. 2016, 14, 90–101. [Google Scholar] [CrossRef]
- Orme, B. Interpreting the results of conjoint analysis. Getting Started Conjoint Anal. Strateg. Product Des. Pricing Res. 2010, 2, 77–88. [Google Scholar]
- Chrzan, K.; Orme, B.K. An Overview and Comparison of Design Strategies for Choice-Based Conjoint Analysis; Sawtooth Software Research Paper Series; Sawtooth Software, Inc.: Sun Valley, ID, USA, 2000; pp. 161–177. [Google Scholar]
- Rao, V.R. Applied Conjoint Analysis; Springer: New York, NY, USA, 2014. [Google Scholar]
- Barnes, N. Smart Textiles for Designers—Inventing the Future of Fabrics. J. Text. Des. Res. Pract. 2016, 4, 191–194. [Google Scholar] [CrossRef]
- Lukowicz, P.; Kirstein, T.; Troster, G. Wearable systems for health care applications. Methods Inf. Med. Meth. Inf. Med. 2004, 43, 232–238. [Google Scholar]
- Langenhove, L.V.; Hertleer, C. Smart Clothing: A New Life. Int. J. Cloth. Sci. Technol. 2004, 16, 63–72. [Google Scholar] [CrossRef]
- Sawtooth Software. Testing the CBC Design, 2018. Available online: https://www.sawtoothsoftware.com/help/lighthouse-studio/manual/hid_web_cbc_designs_6.html (accessed on 31 July 2018).
- Beier, G. Kontrollüberzeugungen im Umgang mit Technik [Locus of Control when Interacting with Technology]. Rep. Psychol. 1999, 24, 684–693. [Google Scholar]
- Sawtooth Software. SSI Web (Software for the Conceptual Design and Analysis of the Online Conjoint Questionnaire), 2016. Available online: https://www.sawtoothsoftware.com/support/downloads/94-support/software-downloads/867-download-ssi-web-capi (accessed on 31 July 2018).
- Van Heek, J.; Brauner, P.; Zielfe, M. What Is Hip?—Classifying Adopters and Rejecters of Interactive Digital Textiles in Home Environments. In Information and Communication Technologies for Ageing Well and e-Health; Röcker, C., O’Donoghue, J., Ziefle, M., Maciaszek, L., Molloy, W., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–20. [Google Scholar]
- Mynatt, E.D.; Melenhorst, A.S.; Fisk, A.D.; Rogers, W.A. Aware Technologies for Aging in Place: Understanding User Needs and Attitudes. IEEE Pervasive Comput. 2004, 3, 36–41. [Google Scholar] [CrossRef]
- Wilkowska, W.; Brauner, P.; Ziefle, M. Rethinking Technology Development for Older Adults: A Responsible Research and Innovation Duty. In Aging, Technology and Health; Pak, R., McLaughlin, A.C., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 1–30. [Google Scholar]
- Wilkowska, W.; Ziefle, M.; Himmel, S. Perceptions of Personal Privacy in Smart Home Technologies: Do User Assessments Vary Depending on the Research Method? In Proceedings of the Third International Conference on Human Aspects of Information Security, Privacy, and Trust, Los Angeles, CA, USA, 2–7 August 2015; Springer-Verlag: New York, NY, USA, 2015; Volume 9190, pp. 592–603. [Google Scholar]
- Balfe, N.; Sharples, S.; Wilson, J.R. Understanding Is Key: An Analysis of Factors Pertaining to Trust in a Real-World Automation System. Hum. Factors 2018, 20, 477–495. [Google Scholar] [CrossRef] [PubMed]
- Klack, L.; Schmitz-Rode, T.; Wilkowska, W.; Kasugai, K.; Heidrich, F.; Ziefle, M. Integrated home monitoring and compliance optimization for patients with mechanical circulatory support devices. Ann. Biomed. Eng. 2011, 39, 2911–2921. [Google Scholar] [CrossRef] [PubMed]
- Peek, S.T.; Wouters, E.J.; van Hoof, J.; Luijkx, K.G.; Boeije, H.R.; Vrijhoef, H.J. Factors influencing acceptance of technology for aging in place: A systematic review. Int. J. Med. Inf. 2014, 83, 235–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Attributes | Levels | ||
---|---|---|---|
Connectivity | |||
Usability | |||
Ease of Cleaning | |||
Input Modality | |||
Feature Range |
Group | n | ItU | Gender | Age | SET | TEX | EST |
---|---|---|---|---|---|---|---|
Adopter | 74 | 35m 39w | |||||
Undecided | 167 | 79m 88w | |||||
Refuser | 83 | 46m 37w | |||||
Significance | p < 0.001 | p = 0.443 > 0.05 | p = 0.803 > 0.05 | p = 0.763 > 0.05 | p < 0.001 | p = 0.478 > 0.05 |
Group | n | ItU | Gender | Age | SET | TEX | EST |
---|---|---|---|---|---|---|---|
Adopter | 78 | 45 m 33 w | |||||
Undecided | 161 | 84 m 77 w | |||||
Refuser | 85 | 31 m 54 w | |||||
Significance | p < 0.001 | p = 0.016 < 0.05 | p = 0.395 > 0.05 | p = 0.067 > 0.05 | p < 0.001 | p = 0.011 < 0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Offermann-van Heek, J.; Brauner, P.; Ziefle, M. Let’s Talk about TEX—Understanding Consumer Preferences for Smart Interactive Textile Products Using a Conjoint Analysis Approach. Sensors 2018, 18, 3152. https://doi.org/10.3390/s18093152
Offermann-van Heek J, Brauner P, Ziefle M. Let’s Talk about TEX—Understanding Consumer Preferences for Smart Interactive Textile Products Using a Conjoint Analysis Approach. Sensors. 2018; 18(9):3152. https://doi.org/10.3390/s18093152
Chicago/Turabian StyleOffermann-van Heek, Julia, Philipp Brauner, and Martina Ziefle. 2018. "Let’s Talk about TEX—Understanding Consumer Preferences for Smart Interactive Textile Products Using a Conjoint Analysis Approach" Sensors 18, no. 9: 3152. https://doi.org/10.3390/s18093152
APA StyleOffermann-van Heek, J., Brauner, P., & Ziefle, M. (2018). Let’s Talk about TEX—Understanding Consumer Preferences for Smart Interactive Textile Products Using a Conjoint Analysis Approach. Sensors, 18(9), 3152. https://doi.org/10.3390/s18093152