Investigation of Bonding Behavior of FRP and Steel Bars in Self-Compacting Concrete Structures Using Acoustic Emission Method
Abstract
:1. Introduction
2. Experimental Program
2.1. Material Properties
2.1.1. Reinforcement Bars
2.1.2. Self-Compacting Concrete
2.2. Details of Test Specimens
2.3. Test Setup and Loading Procedure
3. Detection Principles
4. Discussion of Test Results
4.1. Mechanical Properties
4.1.1. Effect of Rebar Type on Bonding Behavior
4.1.2. Effect of Bar Diameter on Bonding Behavior
4.1.3. Effect of Embedded Length on Bonding Behavior
4.1.4. Effect of Fiber Volume Content on Bonding Behavior
4.2. AE Characteristic Parameters
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Domone, P.L. Self-compacting concrete: An analysis of 11 years of case studies. Cem. Concr. Compos. 2006, 28, 197–208. [Google Scholar] [CrossRef]
- Domone, P.L. A review of the hardened mechanical properties of self-compacting concrete. Cem. Concr. Compos. 2007, 29, 1–12. [Google Scholar] [CrossRef]
- Miller, T.C.; Chajes, M.J.; Mertz, D.R.; Hastings, J.N. Strengthening of a steel bridge girder using CFRP plates. J. Bridge Eng. 2001, 6, 514–522. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, C.; Yang, J.; Sun, C. Influence of arching action on shear behavior of laterally restrained concrete slabs reinforced with GFRP bars. Compos. Struct. 2015, 132, 20–34. [Google Scholar] [CrossRef]
- Xia, L.; Zheng, Y. Deep Embedment (DE) FRP Shear Strengthening of Concrete Bridge Slabs under Loads Close to Supports. Appl. Sci. 2018, 8, 721. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, C.; Deng, T.; Yang, J.; Lu, Z. Arching action contribution to punching failure of GFRP-reinforced concrete bridge deck slabs. Arab. J. Sci. Eng. 2014, 39, 8609–8625. [Google Scholar] [CrossRef]
- Pendhari, S.S.; Kant, T.; Desai, Y.M. Application of polymer composites in civil construction: A general review. Compos. Struct. 2008, 84, 114–124. [Google Scholar] [CrossRef]
- Nanni, A.; De, L.A.; Zadeh, H.J. Reinforced Concrete with FRP Bars: Mechanics and Design; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Dhonde, H.B.; Mo, Y.L.; Hsu, T.T.; Vogel, J. Fresh and hardened properties of self-consolidating fiber-reinforced concrete. ACI Mater. J. 2007, 104, 491. [Google Scholar]
- Yan, F.; Lin, Z.; Yang, M. Bond mechanism and bond strength of GFRP bars to concrete: A review. Compos. Part B Eng. 2016, 98, 56–69. [Google Scholar] [CrossRef]
- Song, G.; Wang, C.; Wang, B. (Eds.) Structural Health Monitoring (SHM) of Civil Structures; MDPI: Basel, Switzerland, 2018; ISBN1 978-3-03842-783-4. ISBN2 978-3-03842-784-1. [Google Scholar]
- Balageas, D.; Fritzen, C.P.; Güemes, A. (Eds.) Structural Health Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 90. [Google Scholar]
- Sun, M.; Staszewski, W.J.; Swamy, R.N. Smart sensing technologies for structural health monitoring of civil engineering structures. Adv. Civ. Eng. 2010, 724962. [Google Scholar] [CrossRef]
- Li, F.; Murayama, H.; Kageyama, K.; Shirai, T. Guided wave and damage detection in composite laminates using different fiber optic sensors. Sensors 2009, 9, 4005–4021. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ho, S.C.M.; Song, G.; Ren, L.; Li, H. A review of damage detection methods for wind turbine blades. Smart Mater. Struct. 2015, 24, 033001. [Google Scholar] [CrossRef]
- Messina, A.; Williams, E.J.; Contursi, T. Structural damage detection by a sensitivity and statistical-based method. J. Sound Vib. 1998, 216, 791–808. [Google Scholar] [CrossRef]
- Long, W.J.; Khayat, K.H.; Lemieux, G.; Hwang, S.D.; Xing, F. Pull-out strength and bond behavior of prestressing strands in prestressed self-consolidating concrete. Materials 2014, 7, 6930–6946. [Google Scholar] [CrossRef]
- Jiang, T.; Kong, Q.; Patil, D.; Luo, Z.; Huo, L.; Song, G. Detection of debonding between fiber reinforced polymer bar and concrete structure using piezoceramic transducers and wavelet packet analysis. IEEE Sens. J. 2017, 17, 1992–1998. [Google Scholar] [CrossRef]
- Luo, M.; Li, W.; Hei, C.; Song, G. Concrete infill monitoring in concrete-filled FRP tubes using a PZT-based ultrasonic time-of-flight method. Sensors 2016, 16, 2083. [Google Scholar] [CrossRef]
- Li, W.; Fan, S.; Ho, S.C.M.; Wu, J.; Song, G. Interfacial debonding detection in fiber-reinforced polymer rebar–reinforced concrete using electro-mechanical impedance technique. Struct. Health Monit. 2018, 17, 461–471. [Google Scholar] [CrossRef]
- Baena, M.; Lluís, T.; Turon, A.; Barris, C. Experimental study of bond behaviour between concrete and FRP bars using a pull-out test. Compos. Part B Eng. 2009, 40, 784–797. [Google Scholar] [CrossRef]
- Tighiouart, B.; Benmokrane, B.; Gao, D. Investigation of bond in concrete member with fiber reinforced polymer (FRP) bars. Constr. Build. Mater. 1998, 12, 453–462. [Google Scholar] [CrossRef]
- Bank, L.C.; Puterman, M.; Katz, A. The effect of material degradation on bond properties of fiber reinforced plastic reinforcing bars in concrete. ACI Mater. J. 1998, 95, 232–243. [Google Scholar]
- Gao, D.Y.; Brahim, B. Influential factors of bond properties between fiber reinforced polymer (FRP) rebars and concrete. Ind. Constr. 2001, 31, 9–14. [Google Scholar]
- Li, C.C.; Gao, D.Y.; Wang, Y.L.; Tang, J.Y. Effect of high temperature on the bond performance between basalt fibre reinforced polymer (BFRP) bars and concrete. Constr. Build. Mater. 2017, 141, 44–51. [Google Scholar] [CrossRef]
- Bazant, Z.P.; Sener, S. Size effect in pullout tests. ACI Mater. J. 1988, 85, 347–351. [Google Scholar]
- Alzahrani, M.M.; Aldulaijan, S.U.; Nanni, A.; Bakis, C.E.; Boothby, T. Evaluation of bond using FRP rods with axisymmetric deformations. Constr. Build. Mater. 1999, 13, 299–309. [Google Scholar] [CrossRef]
- Gu, X.; Yu, B.; Wu, M. Experimental study of the bond performance and mechanical response of GFRP reinforced concrete. Constr. Build. Mater. 2016, 114, 407–415. [Google Scholar] [CrossRef]
- Caro, M.; Jemaa, Y.; Dirar, S.; Quinn, A. Bond performance of deep embedment FRP bars epoxy-bonded into concrete. Eng. Struct. 2017, 147, 448–457. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Y.; Dai, M. Degradation of steel-to-concrete bond due to corrosion. Constr. Build. Mater. 2018, 158, 1073–1080. [Google Scholar] [CrossRef]
- Zhou, A.; Chow, C.L.; Lau, D. Structural behavior of GFRP reinforced concrete columns under the influence of chloride at casting and service stages. Compos. Part B Eng. 2018, 136, 1–9. [Google Scholar] [CrossRef]
- Mazaheripour, H.; Barros, J.A.O.; Sena-Cruz, J.M.; Pepe, M.; Martinelli, E. Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete. Compos. Struct. 2013, 95, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Mazaheripour, H.; Barros, J.A.O.; Sena-Cruz, J.; Soltanzadeh, F. Analytical bond model for GFRP bars to steel fiber reinforced self-compacting concrete. J. Compos. Constr. 2013, 17, 04013009. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Rahai, A.; Seb, M.H. Bond behavior of steel and GFRP bars in self-compacting concrete. Constr. Build. Mater. 2014, 61, 230–240. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Dehestani, M.; Mousavi, S.M. Bond strength and development length of glass fiber-reinforced polymer bar in unconfined self-consolidating concrete. J. Reinf. Plast. Compos. 2016, 35, 924–941. [Google Scholar] [CrossRef]
- Sethi, V.; Song, G. Multimodal vibration control of a flexible structure using piezoceramic sensor and actuator. J. Intell. Mater. Syst. Struct. 2008, 19, 573–582. [Google Scholar] [CrossRef]
- Wang, F.; Huo, L.; Song, G. A piezoelectric active sensing method for quantitative monitoring of bolt loosening using energy dissipation caused by tangential damping based on the fractal contact theory. Smart Mater. Struct. 2017, 27, 015023. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Luo, M.; Hei, C.; Song, G. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival. Smart Mater. Struct. 2018, 27, 035023. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Ho, M.; Zheng, R.; Ding, Z.; Song, G. An exploratory study of stress wave communication in concrete structures. Smart Struct. Syst. 2015, 15, 135–150. [Google Scholar] [CrossRef]
- Qin, F.; Kong, Q.; Li, M.; Mo, Y.L.; Song, G.; Fan, F. Bond slip detection of steel plate and concrete beams using smart aggregates. Smart Mater. Struct. 2015, 24, 115039. [Google Scholar] [CrossRef]
- Hong, X.; Liu, Y.; Liufu, Y.; Lin, P. Debonding Detection in Hidden Frame Supported Glass Curtain Walls Using the Nonlinear Ultrasonic Modulation Method with Piezoceramic Transducers. Sensors 2018, 18, 2094. [Google Scholar] [CrossRef]
- Xu, B.; Li, B.; Song, G. Active debonding detection for large rectangular CFSTs based on wavelet packet energy spectrum with piezoceramics. J. Struct. Eng. 2012, 139, 1435–1443. [Google Scholar] [CrossRef]
- Yan, B.; Zou, Q.; Dong, Y.; Shao, X. Application of PZT Technology and Clustering Algorithm for Debonding Detection of Steel-UHPC Composite Slabs. Sensors 2018, 18, 2953. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Ren, C.; Deng, Q.; Jin, Q.; Chen, X. Real-time monitoring of bond slip between GFRP bar and concrete structure using piezoceramic transducer-enabled active sensing. Sensors 2018, 18, 2653. [Google Scholar] [CrossRef] [PubMed]
- Giurgiutiu, V.; Harries, K.; Petrou, M.; Bost, J.; Quattlebaum, J.B. Disbond detection with piezoelectric wafer active sensors in RC structures strengthened with FRP composite overlays. Earthq. Eng. Eng. Vib. 2003, 2, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Sevillano, E.; Sun, R.; Gil, A.; Perera, R. Interfacial crack-induced debonding identification in FRP-strengthened RC beams from PZT signatures using hierarchical clustering analysis. Compos. Part B Eng. 2016, 87, 322–335. [Google Scholar] [CrossRef]
- Kong, Q.; Robert, R.H.; Silva, P.; Mo, Y.L. Cyclic crack monitoring of a reinforced concrete column under simulated pseudo-dynamic loading using piezoceramic-based smart aggregates. Appl. Sci. 2016, 6, 341. [Google Scholar] [CrossRef]
- Feng, Q.; Kong, Q.; Huo, L.; Song, G. Crack detection and leakage monitoring on reinforced concrete pipe. Smart Mater. Struct. 2015, 24, 115020. [Google Scholar] [CrossRef]
- Du, G.; Kong, Q.; Zhou, H.; Gu, H. Multiple cracks detection in pipeline using damage index matrix based on piezoceramic transducer-enabled stress wave propagation. Sensors 2017, 17, 1812. [Google Scholar] [CrossRef]
- Xu, J.; Wang, C.; Li, H.; Zhang, C.; Hao, J.; Fan, S. Health Monitoring of Bolted Spherical Joint Connection Based on Active Sensing Technique Using Piezoceramic Transducers. Sensors 2018, 18, 1727. [Google Scholar] [CrossRef]
- Li, W.; Ho, S.C.M.; Patil, D.; Song, G. Acoustic emission monitoring and finite element analysis of debonding in fiber-reinforced polymer rebar reinforced concrete. Struct. Health Monit. Int. J. 2017, 16, 674–681. [Google Scholar] [CrossRef]
- Li, W.; Xu, C.; Ho, S.C.M.; Wang, B.; Song, G. Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements. Sensors 2017, 17, 657. [Google Scholar] [CrossRef]
- Kulandaivelu, P.; Kumar, P.S.; Sundaram, S. Wear monitoring of single point cutting tool using acoustic emission techniques. Sadhana-Acad. Proceed. Eng. Sci. 2013, 38, 211–234. [Google Scholar] [CrossRef]
- Behrens, B.-A.; Huebner, S.; Woelki, K. Acoustic emission a promising and challenging technique for process monitoring in sheet metal forming. J. Manuf. Process. 2017, 29, 281–288. [Google Scholar] [CrossRef]
- Alhashan, T.; Addali, A.; Teixeira, J.A.; Elhashan, S. Identifying bubble occurrence during pool boiling employing acoustic emission technique. Appl. Acoust. 2018, 132, 191–201. [Google Scholar] [CrossRef]
- Alhashan, T.; Elforjani, M.; Addali, A.; Teixeira, J. Monitoring of bubble formation during the boiling process using acoustic emission signals. Int. J. Eng. Res. Sci. 2016, 2, 66–72. [Google Scholar]
- Bunnori, N.M.; Lark, R.J.; Holford, K.M. The use of acoustic emission for the early detection of cracking in concrete structures. Mag. Concr. Res. 2011, 63, 683–688. [Google Scholar] [CrossRef]
- Aldandooh, M.A.A.; Bunnori, N.M. Crack classification in reinforced concrete beams with varying thicknesses by mean of acoustic emission signal features. Constr. Build. Mater. 2013, 45, 282–288. [Google Scholar] [CrossRef]
- Balazs, G.L.; Grosse, C.U.; Koch, R.; Reinhardt, H.W. Damage accumulation on deformed steel bar to concrete interaction detected by acoustic emission technique. Mag. Concr. Res. 1996, 48, 311–320. [Google Scholar] [CrossRef]
- Gallego, A.; Benavent-Climent, A.; Suarez, E. Concrete-galvanized steel pull-out bond assessed by acoustic emission. J. Mater. Civ. Eng. 2016, 28, 04015109. [Google Scholar] [CrossRef]
- Abouhussien, A.A.; Hassan, A.A.A. Acoustic emission monitoring for bond integrity evaluation of reinforced concrete under pull-out tests. Adv. Struct. Eng. 2017, 20, 1390–1405. [Google Scholar] [CrossRef]
- Abouhussien, A.A.; Hassan, A.A.A. Acoustic emission-based analysis of bond behavior of corroded reinforcement in existing concrete structures. Struct. Control. Health Monit. 2017, 24, e1893. [Google Scholar] [CrossRef]
- Wang, L.; Yi, J.; Xia, H.; Fan, L. Experimental study of a pull-out test of corroded steel and concrete using the acoustic emission monitoring method. Constr. Build. Mater. 2016, 122, 163–170. [Google Scholar] [CrossRef]
- Liu, P.F.; Chu, J.K.; Liu, Y.L.; Zheng, J.Y. A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission. Mater. Des. 2012, 37, 228–235. [Google Scholar] [CrossRef]
- Geng, J.S.; Sun, Q.; Zhang, Y.C.; Cao, L.W.; Zhang, W.Q. Studying the dynamic damage failure of concrete based on acoustic emission. Constr. Build. Mater. 2017, 149, 9–16. [Google Scholar] [CrossRef]
Material Type | Diameter (mm) | Yield Strength (N/mm2) | Ultimate Strength (N/mm2) | Elastic Modulus (N/mm2) | Strain at Ultimate Strength (%) |
---|---|---|---|---|---|
BFRP | 12 | / | 1032 | 48 | 2.2 |
BFRP | 20 | / | 900 | 45 | 2.1 |
GFRP | 12 | / | 1153 | 52 | 2.0 |
Steel | 12 | 487 | 589 | 210 | 10.0 |
Components | Quantity 1 (kg) | ||
---|---|---|---|
SCC-0.0% | SCC-0.3% | SCC-0.6% | |
Cement 32.5R | 13.68 | 15.12 | 18.00 |
Fly ash | 18.24 | 20.16 | 24.00 |
Limestone powder | 4.56 | 5.04 | 6.00 |
Fine river sand | 55.68 | 55.68 | 55.68 |
Crushed granite | 40.32 | 40.32 | 40.32 |
Water | 12.77 | 13.55 | 15.60 |
Superplasticizer | 0.073 | 0.081 | 0.096 |
Polypropylene fibers | 0.00 | 0.169 | 0.352 |
Batch Designation | Compressive Strength (N/mm2) | Tensile Strength (N/mm2) | Elastic Modulus (N/mm2) |
---|---|---|---|
SCC-0.0% | 54.4 | 3.7 | 3.1 × 104 |
SCC-0.3% | 49.5 | 3.7 | 3.1 × 104 |
SCC-0.6% | 48.5 | 3.5 | 2.8 × 104 |
Specimen Designation | Pmax (kN) | τmax (N/mm 2) | sfp (mm) | τre (N/mm2) | τre/τmax | Failure Mode 1 |
---|---|---|---|---|---|---|
SCC-0.0%-BFRP-d12-40 | 21.76 | 14.43 | 3.61 | 7.36 | 51.0% | PO |
SCC-0.0%-BFRP-d12-80 | 31.79 | 10.54 | 3.51 | 4.56 | 43.3% | PO |
SCC-0.0%-BFRP-d12-120 | 28.73 | 6.35 | 4.47 | 1.93 | 30.5% | PO |
SCC-0.0%-BFRP-d20-80 | 44.48 | 8.85 | 1.83 | 3.41 | 38.5% | PO |
SCC-0.3%-BFRP-d12-80 | 26.81 | 8.89 | 3.81 | 3.15 | 35.5% | PO |
SCC-0.6%-BFRP-d12-80 | 24.22 | 8.03 | 4.41 | 2.72 | 33.9% | PO |
SCC-0.0%-GFRP-d12-80 | 30.46 | 10.10 | 3.41 | 7.19 | 71.2% | PO |
SCC-0.3%-GFRP-d12-80 | 18.67 | 6.19 | 7.15 | 2.76 | 44.6% | PO |
SCC-0.6%-GFRP-d12-80 | 11.88 | 3.94 | 8.23 | 2.60 | 65.8% | PO |
SCC-0.0%-Steel-d12-80 | 62.85 | 20.84 | 0.76 | 7.25 | 34.8% | PO |
SCC-0.3%-Steel-d12-80 | 51.42 | 17.05 | 1.16 | 5.05 | 29.6% | PO |
SCC-0.6%-Steel-d12-80 | 28.68 | 9.51 | 1.24 | 2.96 | 31.1% | PO |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, B.; Wang, J.; Li, H.; Zheng, J.; Zheng, Y.; Song, G. Investigation of Bonding Behavior of FRP and Steel Bars in Self-Compacting Concrete Structures Using Acoustic Emission Method. Sensors 2019, 19, 159. https://doi.org/10.3390/s19010159
Di B, Wang J, Li H, Zheng J, Zheng Y, Song G. Investigation of Bonding Behavior of FRP and Steel Bars in Self-Compacting Concrete Structures Using Acoustic Emission Method. Sensors. 2019; 19(1):159. https://doi.org/10.3390/s19010159
Chicago/Turabian StyleDi, Bo, Jingkai Wang, Haotian Li, Jinhang Zheng, Yu Zheng, and Gangbing Song. 2019. "Investigation of Bonding Behavior of FRP and Steel Bars in Self-Compacting Concrete Structures Using Acoustic Emission Method" Sensors 19, no. 1: 159. https://doi.org/10.3390/s19010159
APA StyleDi, B., Wang, J., Li, H., Zheng, J., Zheng, Y., & Song, G. (2019). Investigation of Bonding Behavior of FRP and Steel Bars in Self-Compacting Concrete Structures Using Acoustic Emission Method. Sensors, 19(1), 159. https://doi.org/10.3390/s19010159