Advances in Molecularly Imprinting Technology for Bioanalytical Applications
Abstract
:1. Introduction
2. Optical Sensing
2.1. Fluorescence Quenching Mechanism
- Photo-induced Oxidation:
- [QDs]2+ + hν → [QDs]2+*
- [QDs]2+* + donor → [QDs]+ + donor+
- Photo-induced Reduction:
- [QDs]2+ + hν → [QDs]2+*
- [QDs]2+* + acceptor → [QDs]3+ + acceptor−
- 1)
- Large Stokes Shifts of QDs avoid fluorescence self-quenching.
- 2)
- Regularly sized QDs possess the emission spectrum with sharper and narrower peaks than typical fluorophores.
- 3)
- QDs do not have the long-wavelength tail which interfere with the application of multi-fluorophores imaging or multi-analyte measurements.
- 4)
- The emission spectrum of the QDs are roughly symmetrical on the wavelength scale.
- 5)
- Their absorption spectrum at broad wavelength ranging from shorter wavelength than the onset of the absorption spectrum of organic dyes, which means QDs can be excited by a spectrally broad light source and use the same excitation light source to excite various size of QDs, make it accessible for easy muti-labeling as well as simultaneously detecting.
- 6)
- QDs possess strong photoluminescence with the fluorescent intensity tenfold more than traditional organic dyes.
- 7)
- The photostability of QDs exhibites 100 times more than traditional organic dyes.
2.1.1. QDs as the Core
2.1.2. Other Materials as the Core
2.2. Fluorescence Enhancing Mechanism
2.2.1. PET System
2.2.2. FRET Systems
2.2.3. Surface Passivation System
2.3. Surface Plasmon Resonance Mechanism
2.3.1. Nanoparticle Decorations
2.3.2. Layer Decorations
2.3.3. New Structures
3. Electrochemical Sensing
3.1. Electrochemical Analytical Method
3.2. Electrochemical Sensing Mechanism
3.3. Electrochemical-MIP-Biosensors
- 1)
- Conductivity of the MIP nanofilm, which refers to the selection and polymerization of functional monomers.
- 2)
- Conductivity of the transducer, which refers to the selection of the electrode material as well as modifiers decorated on the electrode.
3.3.1. Electroactive MIP Nanofilms
3.3.2. Selection of Electrodes
3.3.3. Decorations and Modifications to Electrodes
- (1)
- It helps with easy control and aggregates analytes which facilitates subsequent collection and further study of analytes.
- (2)
- The synthesis procedure is rather simple since Fe3O4 NPs can be controllably added or removed by an external magnetic field.
4. Gravimetric Sensing
4.1. Piezoelectric Sensing Mechanism
4.2. Gravimetric Sensing Application
4.3. Gravimetric Sensing with Electrochemical Methods
5. Magnetic Sensing
5.1. Magnetic-MIP Bioprobes
- 1)
- The magnetic MIP composite allows external-magnetic-field isolation and enrichment of analytes, which extremely enhances the bioprobe’s capability to not only detect analytes, but also aggregate analytes.
- 2)
- Magnetic NPs preserve the advantages of NPs such as high surface area which is favorable for the selectivity.
- 3)
- Magnetic-MIP bioprobes exhibit significant durability, permitting good reusability for more times.
5.2. Magnetic-MIP Biosensors
6. Critiques and Outlook
Acknowledgements
Conflicts of Interest
Abbreviations
References
- Wulff, G.; Sarhan, A. Über die Anwendung von enzymanalog gebauten Polymeren zur racemattrennung. Angew. Chem. 1972, 84, 364. [Google Scholar] [CrossRef]
- Pan, J.; Chen, W.; Ma, Y.; Pan, G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev. 2018, 47, 5574–5587. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qiu, H.; Shen, H.; Pan, J.; Dai, X.; Yan, Y.; Pan, G.; Sellergren, B. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water. Biosens. Bioelectron. 2016, 85, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Zhang, Y.; Guo, X.; Li, C.; Zhang, H. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via raft polymerization. Biosens. Bioelectron. 2010, 26, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Pan, J.; Zhu, H.; Pan, G.; Qiu, F.; Meng, M.; Yao, J.; Yuan, D. Graphene oxide based molecularly imprinted polymers with double recognition abilities: The combination of covalent boronic acid and traditional non-covalent monomers. Chem. Eng. J. 2016, 290, 220–231. [Google Scholar] [CrossRef]
- Pan, G.; Shinde, S.; Yeung, S.Y.; Jakštaitė, M.; Li, Q.; Wingren, A.G.; Sellergren, B. An epitope-imprinted biointerface with dynamic bioactivity for modulating cell–biomaterial interactions. Angew. Chem. Ed. 2017, 56, 15959–15963. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ma, Y.; Pan, J.; Meng, Z.; Pan, G.; Sellergren, B. Molecularly imprinted polymers with stimuli-responsive affinity: Progress and perspectives. Polymers 2015, 7, 1689–1715. [Google Scholar] [CrossRef]
- Yin, Y.; Pan, J.; Cao, J.; Ma, Y.; Pan, G.; Wu, R.; Dai, X.; Meng, M.; Yan, Y. Rationally designed hybrid molecularly imprinted polymer foam for highly efficient λ-cyhalothrin recognition and uptake via twice imprinting strategy. Chem. Eng. J. 2016, 286, 485–496. [Google Scholar] [CrossRef]
- Wang, J.; Dai, J.; Xu, Y.; Dai, X.; Zhang, Y.; Shi, W.; Sellergren, B.; Pan, G. Molecularly imprinted fluorescent test strip for direct, rapid, and visual dopamine detection in tiny amount of biofluid. Small 2018, 1803913. [Google Scholar] [CrossRef]
- Chullasat, K.; Nurerk, P.; Kanatharana, P.; Davis, F.; Bunkoed, O. A facile optosensing protocol based on molecularly imprinted polymer coated on CDTE quantum dots for highly sensitive and selective amoxicillin detection. Sens. Actuators B Chem. 2018, 254, 255–263. [Google Scholar] [CrossRef]
- Chantada-Vázquez, M.P.; Sánchez-González, J.; Peña-Vázquez, E.; Tabernero, M.J.; Bermejo, A.M.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Synthesis and characterization of novel molecularly imprinted polymer—Coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine. Biosens. Bioelectron. 2016, 75, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Panagiotopoulou, M.; Salinas, Y.; Beyazit, S.; Kunath, S.; Duma, L.; Prost, E.G.; Mayes, A.; Resmini, M.; Tse Sum Bui, B.; Haupt, K. Molecularly imprinted polymer coated quantum dots for multiplexed cell targeting and imaging. Angew. Chem. Int. Ed. 2016, 55, 8244–8248. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, Y.; Cheng, J. Molecularly imprinted silica nanospheres embedded CDSE quantum dots for highly selective and sensitive optosensing of pyrethroids. Chem. Mater. 2010, 22, 2451–2457. [Google Scholar] [CrossRef]
- Zhou, Z.; Ying, H.; Liu, Y.; Xu, W.; Yang, Y.; Luan, Y.; Lu, Y.; Liu, T.; Yu, S.; Yang, W. Synthesis of surface molecular imprinting polymer on SiO2-coated cdte quantum dots as sensor for selective detection of sulfadimidine. Appl. Surf. Sci. 2017, 404, 188–196. [Google Scholar] [CrossRef]
- Li, X.; Jiao, H.-F.; Shi, X.-Z.; Sun, A.; Wang, X.; Chai, J.; Li, D.-X.; Chen, J. Development and application of a novel fluorescent nanosensor based on FeSe quantum dots embedded silica molecularly imprinted polymer for the rapid optosensing of cyfluthrin. Biosens. Bioelectron. 2018, 99, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Jalili, R. Molecularly imprinted mesoporous silica embedded with carbon dots and semiconductor quantum dots as a ratiometric fluorescent sensor for diniconazole. Biosens. Bioelectron. 2017, 96, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Mehrzad-Samarin, M.; Faridbod, F.; Dezfuli, A.S.; Ganjali, M.R. A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer. Biosens. Bioelectron. 2017, 92, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Zhang, Z.; Li, J.; Shao, H.; Chen, L.; Yang, X. A molecular imprinting fluorescence sensor based on quantum dots and a mesoporous structure for selective and sensitive detection of 2,4-dichlorophenoxyacetic acid. Sens. Actuators B Chem. 2017, 252, 934–943. [Google Scholar] [CrossRef]
- Zor, E.; Morales-Narvaez, E.; Zamora-Galvez, A.; Bingol, H.; Ersoz, M.; Merkoci, A. Graphene quantum dots-based photoluminescent sensor: A multifunctional composite for pesticide detection. ACS Appl. Mater. Interfaces 2015, 7, 20272–20279. [Google Scholar] [CrossRef]
- Chao, M.-R.; Hu, C.-W.; Chen, J.-L. Glass substrates crosslinked with tetracycline-imprinted polymeric silicate and cdte quantum dots as fluorescent sensors. Anal. Chim. Acta 2016, 925, 61–69. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, S.; Jiang, R.; Sun, L.; Pang, S.; Luo, A. Fluorescent molecularly imprinted membranes as biosensor for the detection of target protein. Sens. Actuators B Chem. 2018, 254, 1078–1086. [Google Scholar] [CrossRef]
- Kim, Y.; Chang, J.Y. Fabrication of a fluorescent sensor by organogelation: CdSe/ZnS quantum dots embedded molecularly imprinted organogel nanofibers. Sens. Actuators B Chem. 2016, 234, 122–129. [Google Scholar] [CrossRef]
- Wang, Y.; Zang, D.; Ge, S.; Ge, L.; Yu, J.; Yan, M. A novel microfluidic origami photoelectrochemical sensor based on CDTE quantum dots modified molecularly imprinted polymer and its highly selective detection of S-fenvalerate. Electrochim. Acta 2013, 107, 147–154. [Google Scholar] [CrossRef]
- Xu, S.; Lu, H.; Li, J.; Song, X.; Wang, A.; Chen, L.; Han, S. Dummy molecularly imprinted polymers-capped CDTE quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. ACS Appl. Mater. Interfaces 2013, 5, 8146–8154. [Google Scholar] [CrossRef]
- Zhang, W.; He, X.-W.; Chen, Y.; Li, W.-Y.; Zhang, Y.-K. Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c. Biosens. Bioelectron. 2011, 26, 2553–2558. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, A.Q.; Yu, C.F.; Wu, S.S.; Shen, J. Facile synthesis of molecularly imprinted graphene quantum dots for the determination of dopamine with affinity-adjustable. ACS Appl. Mater. Interfaces 2015, 7, 11741–11747. [Google Scholar] [CrossRef]
- Liu, H.; Fang, G.; Zhu, H.; Wang, S. Application of molecularly imprinted polymer appended onto CdSe/ZnS quantum dots for optosensing of tocopherol in rice. Food Anal. Methods 2014, 7, 1443–1450. [Google Scholar] [CrossRef]
- Liu, H.; Liu, D.; Fang, G.; Liu, F.; Liu, C.; Yang, Y.; Wang, S. A novel dual-function molecularly imprinted polymer on CdTe/ZnS quantum dots for highly selective and sensitive determination of ractopamine. Anal. Chim. Acta 2013, 762, 76–82. [Google Scholar] [CrossRef]
- Tan, L.; Huang, C.; Peng, R.F.; Tang, Y.W.; Li, W.M. Development of hybrid organic-inorganic surface imprinted Mn-doped ZnS QDs and their application as a sensing material for target proteins. Biosens. Bioelectron. 2014, 61, 506–511. [Google Scholar] [CrossRef]
- Tan, L.; Rang, C.; Xu, S.; Tang, Y. Selective room temperature phosphorescence sensing of target protein using Mn-doped ZnS QDs-embedded molecularly imprinted polymer. Biosens. Bioelectron. 2013, 48, 216–223. [Google Scholar] [CrossRef]
- Mao, Y.; Bao, Y.; Han, D.; Li, F.; Niu, L. Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosens. Bioelectron. 2012, 38, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Li, H.; Wang, L.; Zhang, P.; Zhou, T.; Ding, H.; Ding, L. Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta 2016, 146, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Jeon, J.B.; Chang, J.Y. Molecularly imprinted fullerene-silica nanocomposite particles for sensitive and selective recognition of diethylstilbestrol. Mater. Lett. 2016, 182, 235–239. [Google Scholar] [CrossRef]
- Yan, Y.-J.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Nitrogen-doped graphene quantum dots-labeled epitope imprinted polymer with double templates via the metal chelation for specific recognition of cytochrome c. Biosens. Bioelectron. 2017, 91, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Bell, J.; Biyikal, M.; Gawlitza, K.; Rurack, K. Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a modular microfluidic platform for nanomolar small-molecule detection directly in aqueous samples. Biosens. Bioelectron. 2018, 99, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, J.; Wu, X.; Fu, J.; Kang, Q.; Shen, D.; Li, J.; Chen, L. A molecular imprinting-based turn-on ratiometric fluorescence sensor for highly selective and sensitive detection of 2,4-dichlorophenoxyacetic acid (2,4-d). Biosens. Bioelectron. 2016, 81, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Biyikal, M.; Wagner, R.; Sellergren, B.; Rurack, K. Fluorescent sensory microparticles that “light-up” consisting of a silica core and a molecularly imprinted polymer (MIP) shell. Angew. Chem. Int. Ed. 2013, 52, 7023–7027. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Chen, K.; Huang, C.; Peng, R.; Luo, X.; Yang, R.; Cheng, Y.; Tang, Y. A fluorescent turn-on detection scheme for alpha-fetoprotein using quantum dots placed in a boronate-modified molecularly imprinted polymer with high affinity for glycoproteins. Microchim. Acta 2015, 182, 2615–2622. [Google Scholar] [CrossRef]
- Tan, J.; Wang, H.-F.; Yan, X.-P. A fluorescent sensor array based on ion imprinted mesoporous silica. Biosens. Bioelectron. 2009, 24, 3316–3321. [Google Scholar] [CrossRef]
- Kumar, V.; Anslyn, E.V. A selective turn-on fluorescent sensor for sulfur mustard simulants. J. Am. Chem. Soc. 2013, 135, 6338–6344. [Google Scholar] [CrossRef]
- Kubo, H.; Yoshioka, N.; Takeuchi, T. Fluorescent imprinted polymers prepared with 2-acrylamidoquinoline as a signaling monomer. Org. Lett. 2005, 7, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Song, L.; Zhu, C. Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly. Anal. Chem. 2011, 83, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Ye, Q.; Cui, P.; Zhang, L. Efficient fluorescence energy transfer system between CDTE-doped silica nanoparticles and gold nanoparticles for turn-on fluorescence detection of melamine. J. Agric. Food Chem. 2012, 60, 4550–4558. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, J.; Zhang, Z.; Yuan, C.; Fu, D. CDTE nanocrystals as luminescent probes for detecting ATP, folic acid and l-cysteine in aqueous solution. Colloids Surf. Physicochem. Eng. Asp. 2009, 342, 102–106. [Google Scholar] [CrossRef]
- Chao, M.-R.; Hu, C.-W.; Chen, J.-L. Fluorescent turn-on detection of cysteine using a molecularly imprinted polyacrylate linked to allylthiol-capped cdte quantum dots. Microchim. Acta 2014, 181, 1085–1091. [Google Scholar] [CrossRef]
- Meng, M.; Bai, M.; Da, Z.; Cui, Y.; Li, B.; Pan, J. Selective recognition of salicylic acid employing new fluorescent imprinted membrane functionalized with poly(amidoamine) (PAMAM)-encapsulated Eu(TTA)3phen. J. Lumin. 2019, 208, 24–32. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, L.; Feng, Y.; Shi, F.; Wang, Y.; Wang, P.; Liu, L. Dual-functional peptide conjugated gold nanorods for the detection and photothermal ablation of pathogenic bacteria. J. Mater. Chem. B 2018, 6, 7643–7651. [Google Scholar] [CrossRef]
- Riskin, M.; Tel-Vered, R.; Frasconi, M.; Yavo, N.; Willner, I. Stereoselective and chiroselective surface plasmon resonance (SPR) analysis of amino acids by molecularly imprinted au-nanoparticle composites. Chem. Eur. J. 2010, 16, 7114–7120. [Google Scholar] [CrossRef] [PubMed]
- Frasconi, M.; Tel-Vered, R.; Riskin, M.; Willner, I. Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites. Anal. Chem. 2010, 82, 2512–2519. [Google Scholar] [CrossRef] [PubMed]
- Riskin, M.; Ben-Amram, Y.; Tel-Vered, R.; Chegel, V.; Almog, J.; Willner, I. Molecularly imprinted Au nanoparticles composites on Au surfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate. Anal. Chem. 2011, 83, 3082–3088. [Google Scholar] [CrossRef]
- Zayats, M.; Kharitonov, A.B.; Pogorelova, S.P.; Lioubashevski, O.; Katz, E.; Willner, I. Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance: Application for the detection of acetylcholine esterase inhibitors. J. Am. Chem. Soc. 2003, 125, 16006–16014. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Srivastava, S.; Pandey, M.K.; Agrawal, V.V.; John, R.; Malhotra, B.D. Protein-conjugated quantum dots interface: Binding kinetics and label-free lipid detection. Anal. Chem. 2014, 86, 1710–1718. [Google Scholar] [CrossRef] [PubMed]
- Ghrera, A.S.; Pandey, M.K.; Malhotra, B.D. Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection. Biosens. Bioelectron. 2016, 80, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, Y.; Xu, B.; Zhang, H.; Gao, Y.; Zhang, H.; Song, D. A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod-antibody conjugates for determination of transferrin. Biosens. Bioelectron. 2013, 45, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.W.; Hu, S.Y.; Xia, J.; Anderson, T.; Dinh, X.Q.; Meng, X.M.; Coquet, P.; Yong, K.T. Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B Chem. 2015, 207, 801–810. [Google Scholar] [CrossRef]
- Zeng, S.; Sreekanth, K.V.; Shang, J.; Yu, T.; Chen, C.-K.; Yin, F.; Baillargeat, D.; Coquet, P.; Ho, H.-P.; Kabashin, A.V.; et al. Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater. 2015, 27, 6163–6169. [Google Scholar] [CrossRef] [PubMed]
- Chiu, N.-F.; Huang, T.-Y.; Lai, H.-C.; Liu, K.-C. Graphene oxide-based SPR biosensor chip for immunoassay applications. Nanoscale Res. Lett. 2014, 9, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, R.; Gupta, B.D. Fiber optic SPR sensor for the detection of 3-pyridinecarboxamide (vitamin b-3) using molecularly imprinted hydrogel. Sens. Actuators B Chem. 2013, 177, 279–285. [Google Scholar] [CrossRef]
- Cennamo, N.; Donà, A.; Pallavicini, P.; D’Agostino, G.; Dacarro, G.; Zeni, L.; Pesavento, M. Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sens. Actuators B Chem. 2015, 208, 291–298. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Pesavento, M.; Zeni, L. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine. Sens. Actuators B Chem. 2014, 191, 529–536. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Galatus, R.; Bibbo, L.; Pesavento, M.; Zeni, L. Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sens. Actuators B Chem. 2013, 188, 221–226. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Mishra, S.K.; Gupta, B.D. Fiber optic SPR sensor for the detection of melamine using molecular imprinting. Sens. Actuators B Chem. 2015, 212, 404–410. [Google Scholar] [CrossRef]
- Wu, W.; Shen, J.; Li, Y.; Zhu, H.; Banerjee, P.; Zhou, S. Specific glucose-to-SPR signal transduction at physiological pH by molecularly imprinted responsive hybrid microgels. Biomaterials 2012, 33, 7115–7125. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Liu, K.K.; Morrissey, J.J.; Gandra, N.; Kharasch, E.D.; Singamaneni, S. Gold nanocages with built-in artificial antibodies for label-free plasmonic biosensing. J. Mater. Chem. B 2013, 2, 167–170. [Google Scholar] [CrossRef]
- Suryanarayanan, V.; Wu, C.-T.; Ho, K.-C. Molecularly imprinted electrochemical sensors. Electroanalysis 2010, 22, 1795–1811. [Google Scholar] [CrossRef]
- Blanco-Lopez, M.C.; Lobo-Castanon, M.J.; Miranda-Ordieres, A.J.; Tunon-Blanco, P. Electrochemical sensors based on molecularly imprinted polymers. Trac-Trends Anal. Chem. 2004, 23, 36–48. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, J.; Ma, X.; Zuo, P.; Ye, B.-c.; Li, Y. Ultrasensitive and selective assay of glutathione species in arsenic trioxide-treated leukemia HL-60 cell line by molecularly imprinted polymer decorated electrochemical sensors. Biosens. Bioelectron. 2016, 80, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Idil, N.; Hedström, M.; Denizli, A.; Mattiasson, B. Whole cell based microcontact imprinted capacitive biosensor for the detection of escherichia coli. Biosens. Bioelectron. 2017, 87, 807–815. [Google Scholar] [CrossRef]
- Lakshmi, D.; Bossi, A.; Whitcombe, M.J.; Chianella, I.; Fowler, S.A.; Subrahmanyam, S.; Piletska, E.V.; Piletsky, S.A. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Anal. Chem. 2009, 81, 3576–3584. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Zhang, Y.; Wei, G. Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic Prussian blue catalytic polymer and the enzymatic effect of glucose oxidase. Anal. Chem. 2012, 84, 1888–1893. [Google Scholar] [CrossRef]
- Song, H.; Zhang, L.; Yu, F.; Ye, B.-C.; Li, Y. Molecularly imprinted polymer functionalized nanoporous Au-Ag alloy microrod: Novel supportless electrochemical platform for ultrasensitive and selective sensing of metronidazole. Electrochim. Acta 2016, 208, 10–16. [Google Scholar] [CrossRef]
- Gam-Derouich, S.; Mahouche-Chergui, S.; Truong, S.; Ben Hassen-Chehimi, D.; Chehimi, M.M. Design of molecularly imprinted polymer grafts with embedded gold nanoparticles through the interfacial chemistry of aryl diazonium salts. Polymer 2011, 52, 4463–4470. [Google Scholar] [CrossRef]
- Xie, C.; Li, H.; Li, S.; Wu, J.; Zhang, Z. Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode. Anal. Chem. 2010, 82, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Yola, M.L.; Eren, T.; Atar, N. A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: Application to selective determination of tyrosine in milk. Sens. Actuators B Chem. 2015, 210, 149–157. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Ding, Y.; Ye, D.; Wang, Y.; Cui, S.; Liao, L. Molecularly imprinted electrochemical sensor based on bioinspired au microflowers for ultra-trace cholesterol assay. Biosens. Bioelectron. 2017, 92, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; Liu, J.; Gan, W.; Ye, B.-C.; Li, Y. Highly sensitive and selective voltammetric determination of dopamine using a gold electrode modified with a molecularly imprinted polymeric film immobilized on flaked hollow nickel nanospheres. Microchim. Acta 2017, 184, 1285–1294. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Yang, Y.; Yu, F.; Liu, J.; Song, H.; Liu, J.; Tang, H.; Ye, B.-C.; Sun, Z. Novel electrochemical sensing platform based on a molecularly imprinted polymer decorated 3D nanoporous nickel skeleton for ultrasensitive and selective determination of metronidazole. ACS Appl. Mater. Interfaces 2015, 7, 15474–15480. [Google Scholar] [CrossRef]
- Xia, J.; Cao, X.; Wang, Z.; Yang, M.; Zhang, F.; Lu, B.; Li, F.; Xia, L.; Li, Y.; Xia, Y. Molecularly imprinted electrochemical biosensor based on chitosan/ionic liquid-graphene composites modified electrode for determination of bovine serum albumin. Sens. Actuators B Chem. 2016, 225, 305–311. [Google Scholar] [CrossRef]
- Tong, Y.; Li, H.; Guan, H.; Zhao, J.; Majeed, S.; Anjum, S.; Liang, F.; Xu, G. Electrochemical cholesterol sensor based on carbon nanotube@molecularly imprinted polymer modified ceramic carbon electrode. Biosens. Bioelectron. 2013, 47, 553–558. [Google Scholar] [CrossRef]
- Wang, H.; Yao, S.; Liu, Y.; Wei, S.; Su, J.; Hu, G. Molecularly imprinted electrochemical sensor based on Au nanoparticles in carboxylated multi-walled carbon nanotubes for sensitive determination of olaquindox in food and feedstuffs. Biosens. Bioelectron. 2017, 87, 417–421. [Google Scholar] [CrossRef]
- Ji, J.; Zhou, Z.; Zhao, X.; Sun, J.; Sun, X. Electrochemical sensor based on molecularly imprinted film at Au nanoparticles-carbon nanotubes modified electrode for determination of cholesterol. Biosens. Bioelectron. 2015, 66, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Yola, M.L.; Atar, N. Electrochemical detection of atrazine by platinum nanoparticles/carbon nitride nanotubes with molecularly imprinted polymer. Ind. Eng. Chem. Res. 2017, 56, 7631–7639. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, Y.; Wang, X.; Fang, G.; Wang, S. Prussian blue mediated amplification combined with signal enhancement of ordered mesoporous carbon for ultrasensitive and specific quantification of metolcarb by a three-dimensional molecularly imprinted electrochemical sensor. Biosens. Bioelectron. 2015, 64, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.-T.; Liu, B.; Chen, Y.-P.; Sun, X.-Y. A urea electrochemical sensor based on molecularly imprinted chitosan film doping with CdS quantum dots. Anal. Biochem. 2012, 426, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Bali Prasad, B.; Kumar, A.; Singh, R. Synthesis of novel monomeric graphene quantum dots and corresponding nanocomposite with molecularly imprinted polymer for electrochemical detection of an anticancerous ifosfamide drug. Biosens. Bioelectron. 2017, 94, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rao, H.; Zhao, X.; Liu, X.; Zhong, J.; Zhang, Z.; Zou, P.; Jiang, Y.; Wang, X.; Wang, Y. A novel molecularly imprinted electrochemical sensor based on graphene quantum dots coated on hollow nickel nanospheres with high sensitivity and selectivity for the rapid determination of bisphenol s. Biosens. Bioelectron. 2018, 100, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Roy, E.; Patra, S.; Tiwari, A.; Madhuri, R.; Sharma, P.K. Single cell imprinting on the surface of Ag-ZnO bimetallic nanoparticle modified graphene oxide sheets for targeted detection, removal and photothermal killing of e. Coli. Biosens. Bioelectron. 2017, 89, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Huang, J.; Wang, Y.; Wu, Y.; Luo, X. Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene-carbon nanotube composites. Biosens. Bioelectron. 2015, 68, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Farid, M.M.; Goudini, L.; Piri, F.; Zamani, A.; Saadati, F. Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles. Food Chem. 2016, 194, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Yola, M.L.; Eren, T.; Atar, N. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens. Bioelectron. 2014, 60, 277–285. [Google Scholar] [CrossRef]
- Patra, S.; Roy, E.; Madhuri, R.; Sharma, P.K. Nanocomposite of bimetallic nanodendrite and reduced graphene oxide as a novel platform for molecular imprinting technology. Anal. Chim. Acta 2016, 918, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Roy, E.; Das, R.; Karfa, P.; Kumar, S.; Madhuri, R.; Sharma, P.K. Bimetallic magnetic nanoparticle as a new platform for fabrication of pyridoxine and pyridoxal-5′-phosphate imprinted polymer modified high throughput electrochemical sensor. Biosens. Bioelectron. 2015, 73, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Zhang, Z.; Yang, Z.; Zeng, J.; Jiang, Y. Imprinted electrochemical sensor based on magnetic multi-walled carbon nanotube for sensitive determination of kanamycin. J. Electroanal. Chem. 2015, 755, 7–14. [Google Scholar] [CrossRef]
- Han, Q.; Shen, X.; Zhu, W.; Zhu, C.; Zhou, X.; Jiang, H. Magnetic sensing film based on Fe3O4@Au-GSH molecularly imprinted polymers for the electrochemical detection of estradiol. Biosens. Bioelectron. 2016, 79, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Wang, X.; Yang, Z.; Zhu, W.; Zhou, X.; Jiang, H. Fe3O4@RGO doped molecularly imprinted polymer membrane based on magnetic field directed self-assembly for the determination of amaranth. Talanta 2014, 123, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, J.; Zeng, Y. Molecularly imprinted magnetic nanoparticles for determination of the herbicide chlorotoluron by gate-controlled electro-catalytic oxidation of hydrazine. Microchim. Acta 2015, 182, 249–255. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Vij, V.; Kemp, K.C.; Kim, K.S. Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. Acs Nano 2016, 10, 46–80. [Google Scholar] [CrossRef]
- Sharma, P.S.; Dabrowski, M.; Noworyta, K.; Huynh, T.-P.; Chandra, B.K.C.; Sobczak, J.W.; Pieta, P.; D’Souza, F.; Kutner, W. Fullerene derived molecularly imprinted polymer for chemosensing of adenosine-5 ‘-triphosphate (ATP). Anal. Chim. Acta 2014, 844, 61–69. [Google Scholar] [CrossRef]
- Meng, M.; He, Z.; Yan, L.; Yan, Y.; Sun, F.; Liu, Y.; Liu, S. Fabrication of a novel cellulose acetate imprinted membrane assisted with chitosan-wrapped multi-walled carbon nanotubes for selective separation of salicylic acid from industrial wastewater. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Benitez-Martinez, S.; Valcarcel, M. Graphene quantum dots in analytical science. Trac-Trends Anal. Chem. 2015, 72, 93–113. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, L.; Zhang, J.; Aslan, H.; Dong, M. Photoactive antimicrobial nanomaterials. J. Mater. Chem. B 2017, 5, 8631–8652. [Google Scholar] [CrossRef]
- Mocan, L.; Ilie, I.; Tabaran, F.A.; Iancu, C.; Mosteanu, O.; Pop, T.; Zdrehus, C.; Bartos, D.; Mocan, T.; Matea, C. Selective laser ablation of methicillin-resistant staphylococcus aureus with IgG functionalized multi-walled carbon nanotubes. J. Biomed. Nanotechnol. 2016, 12, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yu, H.; Quan, X.; Chen, S.; Zhang, Y.; Zhao, H.; Wang, H. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl. Catal. B Environ. 2014, 152, 46–50. [Google Scholar] [CrossRef]
- Yanez-Sedeno, P.; Campuzano, S.; Pingarron, J.M. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review. Anal. Chim. Acta 2017, 960, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Shi, X.; Hou, X.; Zhou, J.; Xu, Z. Development of molecularly imprinted electrochemical sensors based on Fe3O4@MWNT-COOH/CS nanocomposite layers for detecting traces of acephate and trichlorfon. Analyst 2014, 139, 6406–6413. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Tian, X.; Ma, Y.; Duan, Y.; Zhao, X.; Pan, G. A Versatile Dynamic Mussel-Inspired Biointerface: From Specific Cell Behavior Modulation to Selective Cell Isolation. Angew. Chem. Int. Ed. 2018, 57, 7878–7882. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Z.; Zhang, H.; Li, C.; Chen, M.; Liu, L.; Dong, M. Enhanced Photoresponsive Graphene Oxide-Modified g-C3N4 for Disassembly of Amyloid β Fibrils. ACS Appl. Mater. Interfaces 2018. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, L.; Wang, J.; Feng, Y.; Xu, E.; Mao, X.; Liu, L. Evaluation of the photo-degradation of Alzheimer’s amyloid fibrils with a label-free approach. Chem. Commun. 2018, 54, 13084–13087. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Ge, D.; Zhang, H.; Feng, Y.; Zhang, Y.; Chen, M.; Dong, M. Differential Modulating Effect of MoS2 on Amyloid Peptide Assemblies. Chem. Eur. J. 2018, 24, 3397. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Li, Q.; Liu, L.; Dong, M. Size Effect of Graphene Oxide on Modulating Amyloid Peptide Assembly. Chem. Eur. J. 2015, 21, 9632–9637. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Z.; Bortolini, C.; Hoffmann, S.V.; Amari, A.; Zhang, H.X.; Liu, L.; Dong, M.D. Dimensionality of carbon nanomaterial impacting on the modulation of amyloid peptide assembly. Nanotechnology 2016, 27, 304001. [Google Scholar] [CrossRef] [PubMed]
- Ersoz, A.; Denizli, A.; Ozcan, A.; Say, R. Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance. Biosens. Bioelectron. 2005, 20, 2197–2202. [Google Scholar] [CrossRef] [PubMed]
- Bartold, K.; Pietrzyk-Le, A.; Huynh, T.-P.; Iskierko, Z.; Sosnowska, M.; Noworyta, K.; Lisowski, W.; Sannicolò, F.; Cauteruccio, S.; Licandro, E.; et al. Programmed transfer of sequence information into a molecularly imprinted polymer for hexakis(2,2′-bithien-5-yl) DNA analogue formation toward single-nucleotide-polymorphism detection. ACS Appl. Mater. Interfaces 2017, 9, 3948–3958. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.-T.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. Epitope molecularly imprinted polymer coated quartz crystal microbalance sensor for the determination of human serum albumin. Sens. Actuators B Chem. 2017, 246, 879–886. [Google Scholar] [CrossRef]
- Lee, M.-H.; Thomas, J.L.; Tseng, H.-Y.; Lin, W.-C.; Liu, B.-D.; Lin, H.-Y. Sensing of digestive proteins in saliva with a molecularly imprinted poly(ethylene-co-vinyl alcohol) thin film coated quartz crystal microbalance sensor. ACS Appl. Mater. Interfaces 2011, 3, 3064–3071. [Google Scholar] [CrossRef] [PubMed]
- Chunta, S.; Suedee, R.; Lieberzeit, P.A. Low-density lipoprotein sensor based on molecularly imprinted polymer. Anal. Chem. 2016, 88, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E.; Majidi, D.; Ozgur, E.; Denizli, A. Whole cell imprinting based escherichia coli sensors: A study for SPR and QCM. Sens. Actuators B Chem. 2015, 209, 714–721. [Google Scholar] [CrossRef]
- Poller, A.M.; Spieker, E.; Lieberzeit, P.A.; Preininger, C. Surface imprints: Advantageous application of ready2use materials for bacterial quartz-crystal microbalance sensors. ACS Appl. Mater. Interfaces 2017, 9, 1129–1135. [Google Scholar] [CrossRef]
- Jenik, M.; Schirhagl, R.; Schirk, C.; Hayden, O.; Lieberzeit, P.; Blaas, D.; Paul, G.; Dickert, F.L. Sensing picornaviruses using molecular imprinting techniques on a quartz crystal microbalance. Anal. Chem. 2009, 81, 5320–5326. [Google Scholar] [CrossRef]
- Jenik, M.; Seifner, A.; Krassnig, S.; Seidler, K.; Lieberzeit, P.A.; Dickert, F.L.; Jungbauer, C. Sensors for bioanalytes by imprinting—Polymers mimicking both biological receptors and the corresponding bioparticles. Biosens. Bioelectron. 2009, 25, 9–14. [Google Scholar] [CrossRef]
- Dickert, F.L.; Hayden, O. Bioimprinting of polymers and sol-gel phases. Selective detection of yeasts with imprinted polymers. Anal. Chem. 2002, 74, 1302–1306. [Google Scholar] [CrossRef] [PubMed]
- Croux, D.; Weustenraed, A.; Pobedinskas, P.; Horemans, F.; Dilien, H.; Haenen, K.; Cleij, T.; Wagner, P.; Thoelen, R.; De Ceuninck, W. Development of multichannel quartz crystal microbalances for MIP-based biosensing. Phys. Status Solidi Appl. Mater. Sci. 2012, 209, 892–899. [Google Scholar] [CrossRef]
- Apodaca, D.C.; Pernites, R.B.; Ponnapati, R.R.; Del Mundo, F.R.; Advincula, R.C. Electropolymerized molecularly imprinted polymer films of a bis-terthiophene dendron: Folic acid quartz crystal microbalance sensing. ACS Appl. Mater. Interfaces 2011, 3, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Yang, J.C.; Park, J.Y. Quartz crystal microbalance (QCM) gravimetric sensing of theophylline via molecularly imprinted microporous polypyrrole copolymers. Sens. Actuators B Chem. 2015, 206, 50–55. [Google Scholar] [CrossRef]
- Shumyantseva, V.V.; Bulko, T.V.; Sigolaeva, L.V.; Kuzikov, A.V.; Archakov, A.I. Electrosynthesis and binding properties of molecularly imprinted poly-o-phenylenediamine for selective recognition and direct electrochemical detection of myoglobin. Biosens. Bioelectron. 2016, 86, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Tretjakov, A.; Syritski, V.; Reut, J.; Boroznjak, R.; Volobujeva, O.; Oepik, A. Surface molecularly imprinted polydopamine films for recognition of immunoglobuling. Microchim. Acta 2013, 180, 1433–1442. [Google Scholar] [CrossRef]
- Kong, L.-J.; Pan, M.-F.; Fang, G.-Z.; He, X.-l.; Yang, Y.-k.; Dai, J.; Wang, S. Molecularly imprinted quartz crystal microbalance sensor based on poly(o-aminothiophenol) membrane and Au nanoparticles for ractopamine determination. Biosens. Bioelectron. 2014, 51, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Liu, G.; Yang, Y.; Wang, S. Quartz crystal microbalance sensor based on molecularly imprinted polymer membrane and three-dimensional Au nanoparticles@mesoporous carbon CMK-3 functional composite for ultrasensitive and specific determination of citrinin. Sens. Actuators B Chem. 2016, 230, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Ishi-i, T.; Nakashima, K.; Shinkai, S.; Ikeda, A. Saccharide libraries as potential templates for regio- and chiroselective introduction of two functional groups into 60 fullerene. J. Org. Chem. 1999, 64, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Kong, X.; Wang, X.; He, X.; Chen, L.; Zhang, Y. Preparation and characterization of uniformly sized molecularly imprinted polymers functionalized with core-shell magnetic nanoparticles for the recognition and enrichment of protein. J. Mater. Chem. 2011, 21, 17863–17871. [Google Scholar] [CrossRef]
- Kan, X.; Zhao, Q.; Shao, D.; Geng, Z.; Wang, Z.; Zhu, J.-J. Preparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers. J. Phys. Chem. B 2010, 114, 3999–4004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, R.; Hu, Y.; Li, G. Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples. Anal. Chem. 2009, 81, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, N.; Jiang, J.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. Molecularly imprinted magnetic microparticles for the simultaneous detection and extraction of rhodamine b. Sens. Actuators B Chem. 2017, 246, 286–292. [Google Scholar] [CrossRef]
- Zhou, J.; Gan, N.; Hu, F.; Li, T.; Zhou, H.; Li, X.; Zheng, L. A single antibody sandwich electrochemiluminescence immunosensor based on protein magnetic molecularly imprinted polymers mimicking capture probes. Sens. Actuators B Chem. 2013, 186, 300–307. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; He, X.; Zhang, Y.; Chen, L. A molecularly imprinted polymer-coated nanocomposite of magnetic nanoparticles for estrone recognition. Talanta 2009, 78, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.-P.; Kutner, W. Molecularly imprinted polymers as recognition materials for electronic tongues. Biosens. Bioelectron. 2015, 74, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.-C.; Lin, C.-C.; Hong, C.-L.; Lin, Z.-X.; Chung, M.-H.; Hsieh, P.-W. Handheld analyzer with on-chip molecularly-imprinted biosensors for electrical detection of propofol in plasma samples. Biosens. Bioelectron. 2016, 86, 623–629. [Google Scholar] [CrossRef] [PubMed]
- UMD Startups. Available online: http://www.otc.umd.edu/about/startups (accessed on 6 January 2019).
- Can Molecularly Imprinted Polymers Give Antibodies A Run for Their Money? Available online: https://www.nature.com/bioent/startup/062003/full/bioent742.html (accessed on 23 June 2003).
QDs | Template | Fabrication Form | Synthesis Approach/Imprinting Techniques | Analytical Method | Size | Emission Wavelength | Linear Range | LOD | Ref |
---|---|---|---|---|---|---|---|---|---|
CdTe | Amoxicillin | Traditional form | Sol-gel/Sol-gel copolymerization | Fluorescence microscopy/SEM/TEM/FTIR | 2.5 nm | 400–700 nm | 0.20–50.0 μg L−1 | 0.14 μg L−1 | [10] |
Mn-doped ZnS | Cocaine and metabolites | Traditional form | Ultrasound irradiation/precipitation polymerization | Spectrofluorimetry/fluorescence spectrometry/XRD/FTIR | 1.66 nm | 400–800 nm | 50–400 mg L−1 | [11] | |
InP/ZnS | glucuronic acid (GlcA)/N-acetyl-neuraminic acid (NANA) | Traditional form | Qds internal excited photopolymerization | TEM/DLS/epifluorescence microscopy/confocal microscopy | 125 ± 17 nm | 550 nm, 660 nm | [12] | ||
CdSe SiO2 | Cyhalothrin | Enveloped by SiO2 | Modified reverse microemulsion method | Fluorescence spectrometry/SEM/TEM/IR spectroscopy | 90 nm | 550–700 nm | 0.1–1000 μM | 3.6 μg L−1 | [13] |
CdTe SiO2 | Sulfadimidine | Enveloped by SiO2 | Sol-gel | Fluorescence spectrometry/FTIR/TEM/XRD | 130 nm | 550–600 nm | 10–60 μM | 1.9–3.1% | [14] |
FeSe SiO2 | Cyfluthrin in sendiments and fish samples | Enveloped by SiO2 | Modified reverse micro-emulsion method | Fluorescence spectrometry/SEM/TEM/FTIR | 100 nm | 435–465 nm | 0.010–0.20 mg L−1 | 1.3 µg kg−1; 1.0 µg kg−1 | [15] |
CdTe/CdS | Diniconazole (DNZ) | Enveloped by SiO2 | Sol-gel | fluorescence spectrophotometry/TEM/SEM/FTIR | 100 ± 10 nm | 530 and 440 nm | 20–160 µg L−1 | 6.4 µg L−1 | [16] |
Graphene SiO2 | Metronidazole | Enveloped by SiO2 | Sol-gel polymerization | luminescence spectrometer/FTIR/SEM/TEM | 100 nm | 450 nm | 0.2–15 μM | 0.15 μM | [17] |
CdTe SiO2 | 2,4-Dichloro-phenoxyacetic acid | On SiO2 nanosphere | Stöber method/sol-gel polymerization | TEM/FTIR/Spectro-fluorimetry/thermogravimetry | 50–80 nm | 370–670 nm | 0.66–80 μM | 2.1 nM | [18] |
Graphene SiO2 | Tributyltin | On SiO2 nanosphere | In-situ polymerization | FTIR/XPS/SEM/TEM/Raman images and spectra/AFM | 2.37 ± 0.39 nm (GQDs)200 nm to 1.2 µm (mSB) | 470 nm (GQDs)460 nm (mSGP) | 0.0−10 ppm | 12.78 ppb (water)42.56 ppb (seawater) | [19] |
CdTe | Tetracycline | Molecularly imprinted glass | Sol-gel polymerization | Spectrofluorimetry/SEM/FTIR | 70 μM–2.2 mM | 535–560 nm | 70 μM–2.2 mM | 2.1 μM | [20] |
Mn2+-doped ZnS | Lysozyme | Molecularly imprinted membrane | Sol-gel polymerization | Spectrofluorimetry/TEM/XRD/FTIR/AFM | 3–4 nm (diameter) 15.2 nm (thickness) 1.55 nm (roughness) | 350–700 nm | 0.1–1.0 μM | 10.2 nM | [21] |
CdSe/ZnS | Histamine | Molecularly imprinted nanofibers | Organogelation process/in-situ polymerization | Spectrofluorimetry/FTIR/SEM/TEM | 50 nm (diameter) | 330 nm, 660 nm | 100–700 μg L−1 | [22] | |
CdTe | S-fenvalerate | On paper-based devices | Wax printing/screen printing | FTIR/SEM/TEM/EIS/EDS/CV | 3–5 nm (QDs)/100 nm (MIPs) | 10 nM–1 μM | 3.5 nM | [23] |
Functional Monomers | Template | Method of Polymerization | Electrode | Electrochemical Analytical Method | Linear Range | LOD | Ref |
---|---|---|---|---|---|---|---|
o-PD | GSH/GSSG | In-situ electrochemical | Au | CV/EIS | 0.04–20 nM(GSH)/0.04–10 nM(GSSG) | 1.33 × 10−2 nM | [67] |
MAH/HEMA | E. coli | UV-polymerization/micro-contact imprinting method | Au | CV/capacitance testing | 1.0 × 10−2–1.0 × 10−7 CFU/mL | 70 CFU/mL | [68] |
NPEDMA | Catechol/dopamine | Electrochemical/photochemical | Au on glass | CV | 228 nM–144µM | 228 nM | [69] |
Prussian blue | Oxytetracycline | Electrochemical | Pt | CV/DPV | 0.1–1.0 μM | 230 fmol/L | [70] |
o-PD | Metronidazole | Electrochemical | Nanoporous Au-Ag alloy microrod | CV | 8.0 × 10−5–1.0 × 103 nM | 2.7 × 10−5 nM | [71] |
Methacrylic acid | Dopamine | Surface-initiated photopolymerization/electrochemical | AuNPs/Au | SWV | 0.1–10 nM | 0.35 nM | [72] |
ATP | CPF | Electrochemical | AuNPs/GCE | CV/EIS | 50–100 μM | 25 μM | [73] |
Phenol | Tyrosine | Electrochemical | cAuNPs/GO/GCE | CV/EIS/DPV | 1.0–20.0 nM | 0.15 nM | [74] |
Aminothiophenol/dopamine | Cholesterol | Electrochemical | Au microflowers/graphene/GCE | CV/EIS/DPV | 10−9–10−4 nM | 3.3 × 10−10 nM | [75] |
Pyrrole/o-PD | Dopamine | Electrochemical | hNiNS/GCE | CV/EIS | 5 × 10−5–5 × 10−2 nM | 1.7 × 10−5 nM | [76] |
o-PD | Metronidazole | Electrochemical | 3D nanoporous Ni/Au | CV/EIS | 6 × 10−5–1.0 × 10−6 nM | 2 × 10−5 nM | [77] |
Pyrrole | Bovine serum albumin | Electrochemical | CS/IL/graphene/GCE | CV/EIS/DPV | 1.0 × 10−7–1.0 × 10−1 mg L−1 | 2 × 10−11 mg L−1 | [78] |
Chitin | Cholesterol | Chemical | MWCNT/CCE | CV/LSV | 1.0 × 10−2–3.0 × 10−1 μM | 1 nM | [79] |
o-PD | Olaquindox | Electrochemical | AuNPs/MWCNT/GCE | CV/DPV | 10.0–200.0 nM | 2.7 nM | [80] |
Aminothiophenol | Cholesterol | Electrochemical | AuNPs/MWNTs/GCE | CV/DPV | 1.0 × 10−4 – 1.0 nM | 3.3 × 10 −5 nM | [81] |
Phenol | Atrazine | Electrochemical | PtNPs/C3N4NTs/GCE | CV/EIS/SWV | 1.0 × 10−3–1.0 × 10−1 nM | 1.5 × 10−4 nM | [82] |
p-ABA/Prussian blue | Metolcarb | Electrochemical | PB/CMK-3/GCE | CV | 5.0 × 10−4–1.0 × 102 μM | 9.3 × 10−2 nM | [83] |
Pyrrole | Urea | Electrochemical | CdS QDs/Au | CV/EIS/DPV | 5.0 × 10−3–7.0 × 10 nM | 1.0 × 10−3 nM | [84] |
N-Acryloyl-4-aminobenzamide | Ifosfamide | Chemical | GQDs/screen-printed carbon | CV/DPV | 0.25–121.35 μg L −1 | 0.177 μg L −1 | [85] |
Pyrrole | Bisphenol S | Electrochemical | hNiNS/GQDs/GCE | CV/DPV | 0.1–50 μM | 0.03 μM | [86] |
APTS | E. coli | Chemical | Ag-ZnO/GO/GCE | SWV | 10–109 CFU mL−1 | 5.9 CFU mL−1 | [87] |
o-PD | Propyl gallate | Electrochemical | PtAu/CNTs/graphene/GCE | CV | 7 × 10−2–1.0 × 10 μM | 2.51 × 10−2 μM | [88] |
Vinyl acetate | Glucose | Chemical | MnO2/CuO/GO/copper wire | CV | 0.5–4.4 mM | 53 μM | [89] |
Pyrrole | Cefixime | Electrochemical | Fe@AuNPs/MWCNs/GCE | CV/EIS/SWV | 1.0 × 10−4–1.0 × 10−2 μM | 2.2 × 10−5 μM | [90] |
Acrylic acid | Pyrazinamide | Chemical | FeAg/RGO/PGE | CV/SWV | 1.996 to 740.74 ng L−1 | 0.66 ng L−1 | [91] |
Acrylic acid | Py/PLP | Electrochemical | FeCu magnetic NPs/PGE | CV/EIS/SWV | 0.099–196.0 μg L−1 (Py)/0.199–157.4 μg L−1 (PLP) | 0.04 μg L −1 (Py)/0.043 mg L −1 (PLP) | [92] |
Methacrylic acid | Kanamycin | Chemical | Fe3O4/MWCNTs/carbon electrode | CV/EIS/DPV | 1.0 × 10−4–1.0 μM | 2.3 × 10−5 μM | [93] |
Gsh | Estradiol | Chemical | Fe3O4@Au/GCE | CV/DPV | 0.025–10.0 μM | 2.76 nM | [94] |
Aniline | Amaranth | Electrochemical | Fe3O4/rGO/GCE | DPV | 0.05–50 μM | 50 nM | [95] |
Methacrylic acid | Chlorotoluron | Chemical | magnetic NiHCF NPs/GCE | CV | 5 × 10−3 to 1 × 10−1 μM | 9.27 × 10−4 μM | [96] |
Functional Monomers | Template | Imprinting Techniques | Linear Range | LOD | Analytical Method | Advantages | Ref |
---|---|---|---|---|---|---|---|
MAH | α-D-glucose | Drop coating | 0.07–8 mM | 0.07 mM | QCM | Successful involvement of metal coordination (metal–ligand chelate) | [112] |
AA/MAA/VP | Low-density lipoprotein (LDL) | Stamp imprinting/spin coating | 4–400 mg dL−1 | 4 mg dL−1 | QCM/AFM | Fast easy and cost-effective testing | [116] |
Zinc acrylate | C- terminus epitope of human serum albumin | Drop coating | 0.050 μgmL−1–0.500 μgmL−1 | 0.026 μg mL−1 | QCM/AFM/SEM/UV-vis/HPLC | Easy and cheap/good selectivity and sensibility/low-cost, time-saving | [114] |
Ethylene/vinylalcohol | Salivary proteins | Thermally induced phase separation (TIPS) | 0.29–0.46 μg mL−1 | 0.1 mg mL−1 | QCM/AFM/ARCHITECT ci 8200 system | Accurate, feasible and economical | [115] |
Urethane | Human rhinovirus (HRV)/foot-and-mouth disease virus (FMDV) | Stamp imprinting/soft lithography/spin-coating | QCM/AFM/Brunauer-Emmett-Teller (BET) analysis | Rapid analysis high cross-sensitivity | [119] | ||
Epon1002F | E. coli | Surface imprinting/nanoimprint lithography (NIL)/spin-coating/PDMS stamp | 0.4–7.3 × 107 CFU mL−1 | 1.4 × 107 CFU mL−1 | AFM/QCM | Superior sensitivity and signal intensities, Easy reproducibility and further shortening of imprint fabrication time | [118] |
HEMA/EGDMA/MAH/AIBN | E. coli | Micro contact imprinting | 0.5–3.0 McFarland | 3.72 × 105 CFU mL−1 | QCM/SPR/AFM/ellipsometer measurements | Real-time detection capabilities and total detection of 1 h or less and low organism detection limits/high stability and reusability | [117] |
Urethane/vinylpyrrolidone | Artificial yeast/erythrocyte | Master stamp/stamp-less imprinting | AFM/QCM | Feasible for process monitoring/high cross-selectivity | [120] |
Functional Monomers | Template | Magnetic Analysis Method | Saturation Magnetization Value | Amount of Absorbed Analytes | Ref |
---|---|---|---|---|---|
Tetraethoxysilane | Bovine hemoglobin | VSM | 25.47 emu g−1 | 110.5 ± 0.83 mg g−1 | [130] |
γ-Aminopropyltrimethoxysilane/tetraethyl orthosilicate | Bovine hemoglobin | VSM | 50 emu g−1 | 10.52 mg g−1 | [131] |
3-(Triethoxysilyl)propyl isocyanate | Estrone | VSM | 44.63 emu g−1 | 183.4 μmol g−1 | [135] |
Nitrobenzoxadiazole | Rhodamine B | VSM | 37.8 emu g−1 | 29.64 mg g−1 | [133] |
Methacrylic acid | Atrazine | VSM | 0.491 emu g−1 | 144.0 ± 2.2 mL g−1 | [132] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Feng, Y.; Pan, G.; Liu, L. Advances in Molecularly Imprinting Technology for Bioanalytical Applications. Sensors 2019, 19, 177. https://doi.org/10.3390/s19010177
Li R, Feng Y, Pan G, Liu L. Advances in Molecularly Imprinting Technology for Bioanalytical Applications. Sensors. 2019; 19(1):177. https://doi.org/10.3390/s19010177
Chicago/Turabian StyleLi, Runfa, Yonghai Feng, Guoqing Pan, and Lei Liu. 2019. "Advances in Molecularly Imprinting Technology for Bioanalytical Applications" Sensors 19, no. 1: 177. https://doi.org/10.3390/s19010177
APA StyleLi, R., Feng, Y., Pan, G., & Liu, L. (2019). Advances in Molecularly Imprinting Technology for Bioanalytical Applications. Sensors, 19(1), 177. https://doi.org/10.3390/s19010177