Tension Force Estimation in Axially Loaded Members Using Wearable Piezoelectric Interface Technique
Abstract
:1. Introduction
2. Impedance-Based Axial Load Estimation Method
2.1. Schematic of the Method
2.2. Axial Force Estimation Model
3. Design of Wearable Piezoelectric Interface for Axial Cylindrical Structure
3.1. Conceptual Design
3.2. Predetermination of Sensitive Frequency Range
3.2.1. Finite Element Modeling
3.2.2. Sensitive Frequency Range
4. Numerical Evaluation of Finite Element Model of Axial Cylindrical Member
4.1. Finite Element Modeling of Axial Cylindrical Member with Wearable PZT Interface
4.2. Numerical Impedance Responses of Wearable PZT Interface
4.3. Estimation of Tension Force Changes in Axial Cylindrical Member
4.3.1. Analytical Model of Wearable PZT Interface
4.3.2. Monitoring of Tension Force Change Using Statistical Damage Metric
4.3.3. Prediction of Tension Force Change in Axial Cylindrical Member
4.3.4. Effect of Load Transfer Capability of Wearable PZT Interface on Tension Force Estimation
5. Experimental Evaluation on Lab-Scale Model of Cable Structure
5.1. Experimental Setup
5.2. Experimental Impedance Signatures of Wearable PZT Interface
5.3. Prediction of Tension Force Changes in Lab-Scale Cable Structure
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shinke, T.; Hironaka, K.; Zui, H.; Nishimura, H. Practical Formulas for Estimation of Cable Tension by Vibration Method. In Proceedings of the Japan Society of Civil Engineers; Japan Society of Civil Engineers: Tokyo, Japan, 1980; pp. 25–32. [Google Scholar]
- Zui, H.; Shinke, T.; Namita, Y. Practical Formulas for Estimation of Cable Tension by Vibration Method. J. Struct. Eng. 1996, 122, 651–656. [Google Scholar] [CrossRef]
- Cho, S.; Lynch, J.P.; Lee, J.-J.; Yun, C.-B. Development of an Automated Wireless Tension Force Estimation System for Cable-stayed Bridges. J. Intell. Mater. Syst. Struct. 2009, 21, 361–376. [Google Scholar] [CrossRef]
- Sung-Han, S.; Jian, L.; Hongki, J.; Jong-Woong, P.; Soojin, C.; Billie, F.S., Jr.; Hyung-Jo, J. A wireless smart sensor network for automated monitoring of cable tension. Smart Mater. Struct. 2014, 23, 025006. [Google Scholar]
- Kim, J.-T.; Huynh, T.-C.; Lee, S.-Y. Wireless structural health monitoring of stay cables under two consecutive typhoons. Struct. Monit. Maint. 2014, 1, 47–67. [Google Scholar] [CrossRef]
- Li, H.; Ou, J.; Zhou, Z. Applications of optical fibre Bragg gratings sensing technology-based smart stay cables. Opt. Lasers Eng. 2009, 47, 1077–1084. [Google Scholar] [CrossRef]
- Huynh, T.-C.; Kim, J.-T. FOS-Based Prestress Force Monitoring and Temperature Effect Estimation in Unbonded Tendons of PSC Girders. J. Aerosp. Eng. 2017, 30, B4016005. [Google Scholar] [CrossRef]
- Kim, S.T.; Park, Y.; Park, S.Y.; Cho, K.; Cho, J.R. A sensor-type PC strand with an embedded FBG sensor for monitoring prestress forces. Sensors 2015, 15, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Kim, C.M.; Choi, S.Y.; Lee, B.Y. Enhanced Strain Measurement Range of an FBG Sensor Embedded in Seven-Wire Steel Strands. Sensors 2017, 17, 1654. [Google Scholar] [CrossRef]
- Park, G.; Sohn, H.; Farrar, C.R.; Inman, D.J. Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vib. Dig. 2003, 35, 451–464. [Google Scholar] [CrossRef]
- Yang, Y.; Lim, Y.Y.; Soh, C.K. Practical issues related to the application of the electromechanical impedance technique in the structural health monitoring of civil structures: I. Experiment. Smart Mater. Struct. 2008, 17, 035008. [Google Scholar] [CrossRef]
- Huynh, T.C.; Dang, N.L.; Kim, J.T. Preload Monitoring in Bolted Connection Using Piezoelectric-Based Smart Interface. Sensors 2018, 18, 2766. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-C.; Huynh, T.-C.; Yi, J.-H.; Kim, J.-T. Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses. Wind Struct. 2017, 24, 385–403. [Google Scholar] [CrossRef]
- Park, S.; Yun, C.-B.; Roh, Y.; Lee, J.-J. PZT-based active damage detection techniques for steel bridge components. Smart Mater. Struct. 2006, 15, 957–966. [Google Scholar] [CrossRef]
- Min, J.; Park, S.; Yun, C.-B.; Lee, C.-G.; Lee, C. Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity. Eng. Struct. 2012, 39, 210–220. [Google Scholar] [CrossRef]
- Huynh, T.C.; Dang, N.L.; Kim, J.T. Advances and challenges in impedance-based structural health monitoring. Struct. Monit. Maint. 2017, 4, 301–329. [Google Scholar]
- Yang, Y.; Liu, H.; Annamdas, V.G.M.; Soh, C.K. Monitoring damage propagation using PZT impedance transducers. Smart Mater. Struct. 2009, 18, 045003. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Radhika, M.A.; Yang, Y. Easy installation method of piezoelectric (PZT) transducers for health monitoring of structures using electro-mechanical impedance technique. In Proceedings of the 16th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 8–12 March 2009; Volume 7292, pp. 729227–729231. [Google Scholar]
- Ryu, J.Y.; Huynh, T.C.; Kim, J.T. Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection. Struct. Monit. Maint. 2017, 4, 237–253. [Google Scholar]
- Lu, X.; Lim, Y.Y.; Soh, C.K. A novel electromechanical impedance-based model for strength development monitoring of cementitious materials. Struct. Health Monit. 2017, 17, 902–918. [Google Scholar] [CrossRef]
- Huynh, T.-C.; Kim, J.-T. Impedance-Based Cable Force Monitoring in Tendon-Anchorage Using Portable PZT-Interface Technique. Math. Probl. Eng. 2014, 2014, 11. [Google Scholar] [CrossRef]
- Wang, C.; Wang, N.; Ho, S.-C.; Chen, X.; Pan, M.; Song, G. Design of a Novel Wearable Sensor Device for Real-Time Bolted Joints Health Monitoring. IEEE Internet Things J. 2018. [Google Scholar] [CrossRef]
- Min, J.; Yun, C.-B.; Hong, J.-W. An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems. Smart Struct. Syst. 2016, 17, 107–122. [Google Scholar] [CrossRef]
- Kim, J.-T.; Park, J.-H.; Hong, D.-S.; Cho, H.-M.; Na, W.-B.; Yi, J.-H. Vibration and impedance monitoring for prestress-loss prediction in PSC girder bridges. Smart Struct. Syst. 2009, 5, 81–94. [Google Scholar] [CrossRef]
- Huynh, T.C.; Kim, J.T. RBFN-based temperature compensation method for impedance monitoring in prestressed tendon anchorage. Struct. Control Health Monit. 2018, 25, e2173. [Google Scholar] [CrossRef]
- Liang, Y.; Li, D.; Parvasi, S.M.; Song, G. Load monitoring of pin-connected structures using piezoelectric impedance measurement. Smart Mater. Struct. 2016, 25, 105011. [Google Scholar] [CrossRef]
- Wang, B.; Huo, L.; Chen, D.; Li, W.; Song, G. Impedance-Based Pre-Stress Monitoring of Rock Bolts Using a Piezoceramic-Based Smart Washer—A Feasibility Study. Sensors 2017, 17, 250. [Google Scholar] [CrossRef]
- Ritdumrongkul, S.; Abe, M.; Fujino, Y.; Miyashita, T. Quantitative health monitoring of bolted joints using a piezoceramic actuator-sensor. Smart Mater. Struct. 2004, 13, 20. [Google Scholar] [CrossRef]
- Lu, X.; Lim, Y.Y.; Soh, C.K. Investigating the performance of “Smart Probe” based indirect EMI technique for strength development monitoring of cementitious materials—Modeling and parametric study. Constr. Build. Mater. 2018, 172, 134–152. [Google Scholar] [CrossRef]
- Huynh, T.-C.; Kim, J.-T. Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique. Smart Struct. Syst. 2017, 20, 181–195. [Google Scholar]
- Liang, C.; Sun, F.P.; Rogers, C.A. Coupled Electro-Mechanical Analysis of Adaptive Material Systems—Determination of the Actuator Power Consumption and System Energy Transfer. J. Intell. Mater. Syst. Struct. 1994, 5, 12–20. [Google Scholar] [CrossRef]
- Huynh, T.-C.; Lee, K.-S.; Kim, J.-T. Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation. Smart Struct. Syst. 2015, 15, 375–393. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Soh, C.K. Effect of varying axial load under fixed boundary condition on admittance signatures of electromechanical impedance technique. J. Intell. Mater. Syst. Struct. 2012, 23, 815–826. [Google Scholar] [CrossRef]
- Zahedi, F.; Huang, H. Time-frequency analysis of electro-mechanical impedance (EMI) signature for physics-based damage detections using piezoelectric wafer active sensor (PWAS). Smart Mater. Struct. 2017, 26, 055010. [Google Scholar] [CrossRef]
- Clough, R.; Penzien, J. Dynamics of Structures; Computers & Structures, Inc.: Berkeley, CA, UAS, 1995. [Google Scholar]
- Islam, M.M.; Huang, H. Understanding the effects of adhesive layer on the electromechanical impedance (EMI) of bonded piezoelectric wafer transducer. Smart Mater. Struct. 2014, 23, 125037. [Google Scholar] [CrossRef]
Mode | Nondimensional Natural Frequency Cn | |
---|---|---|
Fixed-Fixed | Pinned-Pinned | |
1 | 22.3733 | π2 |
2 | 61.6728 | 4π2 |
3 | 120.9034 | 9π2 |
4 | 199.8594 | 16π2 |
5 | 298.5555 | 25π2 |
Elastic Modulus E (GPa) | Mass Density ρ (kg/m3) | Poisson’s Ratio υ | Damping Loss Factor η |
---|---|---|---|
200 | 7850 | 0.3 | 0.02 |
Elastic Modulus YE11 (N/m2) | Mass Density ρ (kg/m3) | Coupling Constant d31 (m/V) | Dielectric Constant εT33 (Farads/m) | Damping Loss Factor η | Dielectric Loss Factor δ |
---|---|---|---|---|---|
6.1 × 1010 | 7650 | −1.71 × 10−10 | 1.53 × 10−8 | 0.0125 | 0.015 |
Case | Inflicted Tension Force (kN) | |
---|---|---|
F | ΔF | |
F0 | 9.81 | 0 |
F1 | 19.62 | 9.81 |
F2 | 29.43 | 19.62 |
F3 | 39.24 | 29.43 |
F4 | 49.05 | 39.24 |
Case | Peak 1 | Peak 2 | Peak 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Imp. Analysis | F-F Model | P-P Model | Imp. Analysis | F-F Model | P-P Model | Imp. Analysis | F-F Model | P-P Model | |
F0 | 2.25 | 2.28 | 1.23 | 11.78 | 11.43 | 8.60 | 28.61 | 27.91 | 23.25 |
F1 | 2.39 | 2.47 | 1.49 | 12.02 | 11.63 | 8.95 | 28.88 | 28.12 | 23.60 |
F2 | 2.53 | 2.64 | 1.70 | 12.25 | 11.84 | 9.29 | 29.12 | 28.33 | 23.95 |
F3 | 2.65 | 2.80 | 1.89 | 12.48 | 12.04 | 9.61 | 29.36 | 28.54 | 24.29 |
F4 | 2.77 | 2.96 | 2.07 | 12.71 | 12.24 | 9.92 | 29.62 | 28.74 | 24.63 |
Infliction | Prediction (α = 1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Using Peak 1 | Using Peak 2 | Using Peak 3 | Using Peaks 1–3 | ||||||
Case | ΔF | ΔF | Error | ΔF | Error | ΔF | Error | ΔF | Error |
F0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F1 | 9.81 | 7.21 | 26.50% | 11.72 | 19.47% | 12.90 | 31.50% | 10.61 | 8.15% |
F2 | 19.62 | 14.84 | 24.36% | 23.17 | 18.09% | 24.46 | 24.67% | 20.82 | 6.13% |
F3 | 29.43 | 21.73 | 26.16% | 34.84 | 18.38% | 36.13 | 22.77% | 30.90 | 4.99% |
F4 | 39.24 | 28.94 | 26.25% | 46.73 | 19.09% | 48.87 | 24.54% | 41.51 | 5.79% |
Case | Inflicted Cable Force (kN) | |
---|---|---|
F | ΔF | |
F1 | 0 | 0 |
F2 | 9.81 | 9.81 |
F3 | 19.62 | 19.62 |
Infliction | Prediction (α = 1) | ||||||
---|---|---|---|---|---|---|---|
Using Peak 1 | Using Peak 2 | Using Peaks 1–2 | |||||
Case | ΔF | ΔF | Error | ΔF | Error | ΔF | Error |
F1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
F2 | 9.81 | 4.99 | 49.13% | 5.21 | 46.89% | 5.10 | 48.01% |
F3 | 19.62 | 11.00 | 43.93% | 10.86 | 44.65% | 10.93 | 44.29% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, J.-Y.; Huynh, T.-C.; Kim, J.-T. Tension Force Estimation in Axially Loaded Members Using Wearable Piezoelectric Interface Technique. Sensors 2019, 19, 47. https://doi.org/10.3390/s19010047
Ryu J-Y, Huynh T-C, Kim J-T. Tension Force Estimation in Axially Loaded Members Using Wearable Piezoelectric Interface Technique. Sensors. 2019; 19(1):47. https://doi.org/10.3390/s19010047
Chicago/Turabian StyleRyu, Joo-Young, Thanh-Canh Huynh, and Jeong-Tae Kim. 2019. "Tension Force Estimation in Axially Loaded Members Using Wearable Piezoelectric Interface Technique" Sensors 19, no. 1: 47. https://doi.org/10.3390/s19010047
APA StyleRyu, J. -Y., Huynh, T. -C., & Kim, J. -T. (2019). Tension Force Estimation in Axially Loaded Members Using Wearable Piezoelectric Interface Technique. Sensors, 19(1), 47. https://doi.org/10.3390/s19010047