An Improved Robust Method for Pose Estimation of Cylindrical Parts with Interference Features
Abstract
:1. Introduction
2. Experimental Scheme and Measurement Principle
2.1. Axis Pose Measurement Method Based on Profile Scanning
2.2. Algorithms for the Centers of the Ellipses on Each Intersection
3. Robust Enhancement Algorithm for Pose Estimation
3.1. Ellipse Fitting
3.2. Ellipse Fitting
4. Prototype Experiment
4.1. Design of the Prototype
4.2. Design of the Prototype
4.3. Adjustment for the Cylindrical Part with Interference Features
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, S.; Deng, Z.; Zeng, Q.; Huang, X. A coaxial alignment method for large aircraft component assembly using distributed monocular vision. Assem. Autom. 2018, 38, 437–449. [Google Scholar] [CrossRef]
- Sansoni, G.; Trebeschi, M.; Docchio, F. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation. Sensors 2009, 9, 568–601. [Google Scholar] [CrossRef]
- Muralikrishnan, B.; Phillips, S.; Sawyer, D. Laser trackers for large-scale dimensional metrology: A review. Precis. Eng. 2016, 44, 13–28. [Google Scholar] [CrossRef]
- Williams, G.; Chalupa, E.; Rahhal, S. Automated Positioning and Alignment Systems. SAE Tech. Paper Ser. 2000, 109, 737–745. [Google Scholar]
- Rodriguez-Martin, M.; Rodriguez-Gonzalvez, P.; Gonzalez-Aguilera, D.; Fernandez-Hernandez, J. Feasibility study of a structured light system applied to welding inspection based on articulated coordinate measure machine data. IEEE Sens. J. 2017, 17, 1. [Google Scholar] [CrossRef]
- Guo, Y.; Yao, Y.; Di, X. Research on Structural Parameter Optimization of Binocular Vision Measuring System for Parallel Mechanism. In Proceedings of the 2006 International Conference on Mechatronics and Automation, Luoyang, China, 25–28 June 2006; pp. 1131–1135. [Google Scholar]
- Liu, W.; Li, X.; Jia, Z.; Li, H.; Ma, X.; Yan, H.; Ma, J. Binocular-vision-based error detection system and identification method for PIGEs of rotary axis in five-axis machine tool. Precis. Eng. 2018, 51, 208–222. [Google Scholar] [CrossRef]
- Peng, G.; Han, R.; Li, C.; Sun, Y. An automated assembly technology for large mobile radar antenna. Assem. Autom. 2016, 36, 429–438. [Google Scholar] [CrossRef]
- Corke, P. Robotics, Vision and Control: Fundamental Algorithms. In MATLAB®, 2nd ed.; Springer: London, UK, 2017. [Google Scholar]
- Ventura, J.A.; Wan, W. Accurate matching of two-dimensional shapes using the minimal tolerance zone error. Image Vis. Comput. 1997, 15, 889–899. [Google Scholar] [CrossRef]
- David, P.; Dementhon, D.; Duraiswami, R.; Samet, H. Simultaneous pose and correspondence determination using line features. In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR-03, Madison, WI, USA, 18–20 June 2003; Volume 2, pp. 1–4. [Google Scholar]
- Cyr, C.M.; Kimia, B.B. 3D object recognition using shape similiarity-based aspect graph. In Proceedings of the 8th IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; Volume 1, pp. 254–261. [Google Scholar]
- Song, W.; Zhou, Y. Estimation of monocular vision 6-DOF pose based on CAD model. Opt. Precis. Eng. 2016, 24, 882–891. [Google Scholar] [CrossRef]
- Liu, S.; Xu, D.; Zhang, D.; Zhang, Z. High Precision Automatic Assembly Based on Microscopic Vision and Force Information. IEEE Trans. Autom. Sci. Eng. 2016, 13, 1–12. [Google Scholar] [CrossRef]
- Wagner, M.; Hess, P.; Reitelshoefer, S.; Franke, J. 3D scanning of workpieces with cooperative industrial robot arms. In Proceedings of the 47th International Symposium on Robotics (ISR 2016), Munich, Germany, 21–22 June 2016. [Google Scholar]
- Abu-Nabah, B.A.; ElSoussi, A.O.; Al Alami, A.E.K. Simple laser vision sensor calibration for surface profiling applications. Opt. Lasers Eng. 2016, 84, 51–61. [Google Scholar] [CrossRef]
- Abu-Nabah, B.A.; ElSoussi, A.O.; Al Alami, A.E.K. Virtual laser vision sensor environment assessment for surface profiling applications. Measurement 2018, 113, 148–160. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Lee, B.R. Laser-Vision-based Quality Inspection System for Small-Bead Laser Welding. Int. J. Precis. Eng. Man. 2014, 15, 415–423. [Google Scholar] [CrossRef]
- De Ruijsscher, T.V.; Hoitink, A.J.F.; Dinnissen, S.; Vermeulen, B.; Hazenberg, P. Application of a Line Laser Scanner for Bed Form Tracking in a Laboratory Flume. Water Resour. 2018, 54, 2078–2094. [Google Scholar] [CrossRef]
- Bellandi, P.; Docchio, F.; Sansoni, G. Roboscan: A combined 2D and 3D vision system for improved speed and flexibility in pick-and-place operation. Int. J. Adv. Manuf. Technol. 2013, 69, 1873–1886. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Han, J.X.; Fu, X.B.; Lin, H.B. An online measurement method based on line laser scanning for large forgings. Int. J. Adv. Manuf. Technol. 2014, 70, 439–448. [Google Scholar] [CrossRef]
- Rahayem, M.; Werghi, N.; Kjellander, J. Best ellipse and cylinder parameters estimation from laser profile scan sections. Opt. Lasers Eng. 2012, 50, 1242–1259. [Google Scholar] [CrossRef]
- Rahayem, M.R.; Kjellander, J.A. Quadric segmentation and fitting of data captured by a laser profile scanner mounted on an industrial robot. Int. J. Adv. Manuf. Technol. 2011, 52, 155–169. [Google Scholar] [CrossRef]
- Turgut, K.; Dutagaci, H.; Soyleyici, C.; Secil, S.; Ozkan, M.; Parlaktuna, O.; Parlaktuna, M. A method for determining local coordinate frames attached to objects by a laser profile sensor in industrial robot workspaces. In Proceedings of the 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Coimbra, Portugal, 26–28 April 2017; pp. 260–265. [Google Scholar]
- Halíř, R.; Flusser, J. Numerically stable direct least squares fitting of ellipses. In Proceedings of the International Conference in Central Europe on Computer Graphics and Visualization, Plzen, Czech Republic, February 9–13 1998; pp. 125–132. [Google Scholar]
- Kumar, R.; Hanson, A. Robust Methods for Estimating Pose and a Sensitivity Analysis. CVGIP Image Underst. 1994, 60, 313–342. [Google Scholar] [CrossRef]
- Song, G.; Wang, H. A Fast and Robust Ellipse Detection Algorithm Based on Pseudo-random Sample Consensus. In Proceedings of the 12th international conference on Computer analysis of images and patterns, Vienna, Austria, 27–29 August 2007; Volume 4673, pp. 669–676. [Google Scholar]
- Chen, J.; Zheng, S.H.; Pan, L.; Yu, L. Pupil detection method based on ellipse fitting and parameter passing. Chin. J. Sci. Instrum. 2014, 35, 1890–1899. [Google Scholar]
- Jarvis, R.A. A Perspective on Range Finding Techniques for Computer Vision. IEEE Trans. Pattern Anal. Mach. Intell. 1983, 5, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.; Kharkovsky, S. Detection of Surface Crack in Concrete Using Measurement Technique with Laser Displacement Sensor. IEEE Trans. Instrum. Meas. 2016, 65, 1–3. [Google Scholar] [CrossRef]
- FitzGibbon, A.; Pilu, M.; Fisher, R. Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 476–480. [Google Scholar] [CrossRef]
- Ahn, S.J.; Rauh, W.; Warnecke, H.-J. Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recognit. 2001, 34, 2283–2303. [Google Scholar] [CrossRef]
- Janowski, A.; Bobkowska, K.; Szulwic, J. 3D modelling of cylindrical-shaped objects from LiDAR data—An assessment based on theoretical modelling and experimental data. Metrol. Meas. Syst. 2018, 25, 47–56. [Google Scholar]
- Janowski, A. The circle object detection with the use of Msplit estimation. E3S Web Conf. 2018, 26, 14. [Google Scholar] [CrossRef]
- Wiśniewski, Z.; Zienkiewicz, M.H. Shift-Msplit* Estimation in Deformation Analyses. J. Surv. Eng. 2016, 142, 4016015. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Qiu, Y.Y.; Ning, B.; Yang, C.Q.; Zhong, K.K. Automatic comprehensive noncontact measurement and solution method for cylindrical workpieces without targets. Opt. Precis. Eng. 2018, 26, 2963–2970. [Google Scholar] [CrossRef]
Inner Percent by Measurement | Real Inner Percent | Error | |||
---|---|---|---|---|---|
Ideal | 0 | 0 | - | - | - |
A | −0.0050 | −0.0128 | 97.5% | 100% | 0.0137 |
B | 3.0625 | 0.0371 | 7.6% | 96% | 3.0627 |
C | −2.1428 | −0.0250 | 2.1% | 85% | 2.1429 |
D | 158.5066 | 4.2871 | 0.35% | 50% | 158.5646 |
Inner Percent by Measurement | Real Inner Percent | Error | |||
---|---|---|---|---|---|
Ideal | 0 | 0 | - | - | - |
A | −0.0088 | −0.0132 | 97.3% | 100% | 0.0159 |
B | 0.0367 | −0.0002 | 93.2% | 96% | 0.0367 |
C | 0.7803 | −0.0059 | 81.3% | 85% | 0.7803 |
D | 157.6744 | 4.0763 | 0.35% | 50% | 157.7271 |
Method\Pose | ||||
---|---|---|---|---|
Proposed | −0.853 | 0.826 | −0.114 | 0.845 |
Non-robust | −4.906 | 0.430 | 98.145 | −19.732 |
LTS | −0.868 | 0.821 | 0.042 | 0.613 |
Deviation A 1 | 0.015 | 0.005 | 0.156 | 0.241 |
Deviation B 2 | 4.038 | 0.425 | 98.103 | −19.119 |
Method\Pose | ||||
---|---|---|---|---|
Target pose | 0 | 0 | 0 | 0 |
Pose A 1 | −0.011 | 0.022 | 0.081 | −0.021 |
Pose B 2 | 0.009 | 0.017 | −0.120 | 0.080 |
Deviation between the pose A and pose B | 0.020 | 0.005 | 0.201 | 0.101 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Qiu, Y.; Duan, X.; Xu, K.; Yang, C. An Improved Robust Method for Pose Estimation of Cylindrical Parts with Interference Features. Sensors 2019, 19, 2234. https://doi.org/10.3390/s19102234
Zhang J, Qiu Y, Duan X, Xu K, Yang C. An Improved Robust Method for Pose Estimation of Cylindrical Parts with Interference Features. Sensors. 2019; 19(10):2234. https://doi.org/10.3390/s19102234
Chicago/Turabian StyleZhang, Jieyu, Yuanying Qiu, Xuechao Duan, Kangli Xu, and Changqi Yang. 2019. "An Improved Robust Method for Pose Estimation of Cylindrical Parts with Interference Features" Sensors 19, no. 10: 2234. https://doi.org/10.3390/s19102234
APA StyleZhang, J., Qiu, Y., Duan, X., Xu, K., & Yang, C. (2019). An Improved Robust Method for Pose Estimation of Cylindrical Parts with Interference Features. Sensors, 19(10), 2234. https://doi.org/10.3390/s19102234