Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design
Abstract
:1. Introduction
2. Modeling and Identification of Robot Parameters
2.1. Dynamic Identification Model
2.2. Data Acquisition and Signal Processing
2.3. MLE for Parameter Estimation
3. Obtaining the Optimal Robot Excitation Trajectories
3.1. Optimal Criteria for the Experiment Design
3.2. Optimal Excitation Signal for the Experiment Design
4. Identification Implementation Process
4.1. Dynamic Model of the Planar Manipulator
4.2. Simulation of the Excitation Trajectory Optimization
- Embedded criterion F2 = (−log(det(FTΣ−1F)−1)) < −75;
- Joint angle limits (rad): −3.14 < q1 < 3.14, −3.14 < q2 < 3.14;
- Joint velocity limits (rad/s): −5.2 < < 5.2, −5.2 < < 5.2;
- Joint acceleration limits (rad/s2): −4.5 < < 4.5, −4.5 < < 4.5;
- The position, velocity, and acceleration of the two joints at the initial and end times are 0. e.g.,
4.3. Multi-criteria Embedded Nonlinear Optimization
4.4. Experimental Procedure
5. Results
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ayusawa, K.; Venture, G.; Nakamura, Y. Identification of humanoid robots dynamics using floating-base motion dynamics. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 2854–2859. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, S.; Wang, X.; Liu, H. Closed-loop dynamic parameter identification of robot manipulators using modified Fourier series. Int. J. Adv. Robot. Syst. 2012, 9, 29. [Google Scholar] [CrossRef]
- Gautier, M.; Khalil, W.; Restrepo, P.P. Identification of the dynamic parameters of a closed loop robot. In Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; pp. 3045–3050. [Google Scholar] [CrossRef]
- Gautier, M. Dynamic identification of robots with power model. In Proceedings of the International Conference on Robotics and Automation, Albuquerque, NM, USA, 25–25 April 1997; pp. 1922–1927. [Google Scholar] [CrossRef]
- Gautier, M.; Janot, A.; Vandanjon, P.O. A new closed-loop output error method for parameter identification of robot dynamics. IEEE Trans. Control. Syst. Technol. 2013, 21, 428–444. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; You, Z. An overview of dynamic parameter identification of robots. Robot. Comput. Integr. Manuf. 2010, 26, 414–419. [Google Scholar] [CrossRef]
- Bona, B.; Curatella, A. Identification of industrial robot parameters for advanced model-based controllers design. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 1681–1686. [Google Scholar] [CrossRef]
- Bahloul, A.; Tliba, S.; Chitour, Y. Dynamic Parameters Identification of an Industrial Robot with and Without Payload. IFAC-PapersOnLine 2018, 51, 443–448. [Google Scholar] [CrossRef]
- Briot, S.; Gautier, M. Global identification of joint drive gains and dynamic parameters of parallel robots. Multibody Syst. Dyn. 2015, 33, 3–26. [Google Scholar] [CrossRef]
- Swevers, J.; Ganseman, C.; Tukel, D.B.; Schutter, J.D.; Brussel, H.V. Optimal robot excitation and identification. IEEE Trans. Robot. Autom. 1997, 13, 730–740. [Google Scholar] [CrossRef] [Green Version]
- Zak, G.; Benhabib, B.; Fenton, R.G.; Saban, I. Application of the weighted least squares parameter estimation method to the robot calibration. IEEE/ASME J. Mech. Des. 1994, 116, 890–893. [Google Scholar] [CrossRef]
- Poignet, P.; Gautier, M. Comparison of weighted least squares and extended kalman filtering methods for dynamic identification of robots. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April 2000; Volume 4, pp. 3622–3627. [Google Scholar] [CrossRef]
- Janot, A.; Vandanjon, P.-O.; Gautier, M. A generic instrumental variable approach for industrial robot identification. IEEE Trans. Control Syst. Technol. 2014, 22, 132–145. [Google Scholar] [CrossRef]
- Janot, A.; Vandanjon, P.O.; Gautier, M. An instrumental variable approach for rigid industrial robots identification. Control Eng. Pract. 2014, 25, 85–101. [Google Scholar] [CrossRef]
- Brunot, M.; Janot, A.; Young, P.C.; Carrillo, F. An improved instrumental variable method for industrial robot model identification. Control Eng. Pract. 2018, 74, 107–117. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Ishida, T.; Sunawada, M. Neural network aided dynamic parameter identification of robot manipulators. In Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan, 8–11 October 2006; pp. 3298–3303. [Google Scholar] [CrossRef]
- Calafiore, G.; Indri, M.; Bona, B. Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation. J. Robot. Syst. 2001, 18, 55–68. [Google Scholar] [CrossRef]
- Soewandito, D.B.; Oetomo, D.; Ang, M.H., Jr. Neuro-adaptive motion control with velocity observer in operational space formulation. Robot. Comput.-Int. Manuf. 2011, 27, 829–842. [Google Scholar] [CrossRef]
- Hu, J.; Xiong, R. Contact force estimation for robot manipulator using semiparametric model and disturbance Kalman filter. IEEE Trans. Ind. Electron. 2018, 65, 3365–3375. [Google Scholar] [CrossRef]
- Urrea, C.; Pascal, J. Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot. Comput. Electr. Eng. 2018, 67, 791–806. [Google Scholar] [CrossRef]
- Swevers, J.; Verdonck, W.; De Schutter, J. Dynamic model identification for industrial robots. IEEE Control Syst. Mag. 2007, 27, 58–71. [Google Scholar] [CrossRef]
- Atkeson, C.G.; An, C.H.; Hollerbach, J.M. Estimation of inertial parameters of manipulator loads and links. Int. J. Robot. Res. 1986, 5, 101–119. [Google Scholar] [CrossRef]
- Park, K.J. Fourier-based optimal excitation trajectories for the dynamic identification of robots. Robotica 2006, 24, 625–633. [Google Scholar] [CrossRef]
- Gautier, M.; Khalil, W. Exciting trajectories for the identification of base inertial parameters of robots. Int. J. Robot. Res. 1992, 11, 362–375. [Google Scholar] [CrossRef]
- Jin, J.; Gans, N. Parameter identification for industrial robots with a fast and robust trajectory design approach. Robot. Com.-Int. Manuf. 2015, 31, 21–29. [Google Scholar] [CrossRef]
- Khan, Z.A.; Chacko, V.; Nazir, H. A review of friction models in interacting joints for durability design. Friction 2017, 5, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Khalil, W.; Dombre, E. Modeling, Identification and Control of Robots, 3rd ed.; Taylor and Francis Group: New York, NY, USA, 2002. [Google Scholar]
- Gautier, M. Numerical calculation of the base inertial parameters of robots. J. Robot. Syst. 1991, 8, 485–506. [Google Scholar] [CrossRef]
- Gautier, M.; Khalil, W. Direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans. Robot. Autom. 1990, 6, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Mayeda, H.; Yoshida, K.; Osuka, K. Base parameters of manipulator dynamic models. IEEE Trans. Robot. Autom. 1990, 6, 312–321. [Google Scholar] [CrossRef]
- Calanca, A.; Capisani, L.M.; Ferrara, A.; Magnani, L. MIMO closed loop identification of an industrial robot. IEEE Trans. Contr. Syst. Techol. 2011, 19, 1214–1224. [Google Scholar] [CrossRef]
- Do Thanh, T.; Kotlarski, J.; Heimann, B.; Ortmaier, T. Dynamics identification of kinematically redundant parallel robots using the direct search method. Mech. Mach. Theory 2012, 55, 104–121. [Google Scholar] [CrossRef]
- Armstrong, B. On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics. Int. J. Robot. Res. 1989, 8, 28–48. [Google Scholar] [CrossRef]
- Presse, C.; Gautier, M. New criteria of exciting trajectories for robot identification. In Proceedings of the 1993 IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 907–912. [Google Scholar] [CrossRef]
- Abdellatif, H.; Heimann, B.; Grotjahn, M. Statistical approach for bias-free identification of a parallel manipulator affected by large measurement noise. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 15 December 2005; pp. 3357–3362. [Google Scholar] [CrossRef]
- Abdellatif, H.; Heimann, B. Advanced model-based control of a 6-DOF hexapod robot: A case study. IEEE/ASME Trans. Mech. 2010, 15, 269–279. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, M.; Iriarte, X.; Mata, V.; Ros, J. On the experiment design for direct dynamic parameter identification of parallel robots. Adv. Robot. 2009, 23, 329–348. [Google Scholar] [CrossRef]
- Craig, J.J. Introduction to Robotics: Mechanics and Control, 3rd ed.; Pearson Education: Chennai, India, 2009. [Google Scholar]
- Mata, V.; Farhat, N.; Díaz-Rodríguez, M.; Manipilators, P. Dynamic parameter identification for parallel manipulators. In Parallel Manipulators, Towards New Applications; IntechOpen: London, UK, 2008. [Google Scholar]
- Khalil, W.; Dombre, E. Modeling, identification and control of robots. In Butterworth-Heinemann; IntechOpen: London, UK, 2004. [Google Scholar]
- Valdez, F.; Melin, P.; Castillo, O. An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Appl. Soft Comput. 2011, 11, 2625–2632. [Google Scholar] [CrossRef]
- David, R.C.; Precup, R.E.; Petriu, E.M.; Rădac, M.-B.; Preitl, S. Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity. Inf. Sci. 2013, 247, 154–173. [Google Scholar] [CrossRef]
- Jin, H.; Liu, Z.; Zhang, H.; Liu, Y.; Zhao, J. A Dynamic Parameter Identification Method for Flexible Joints Based on Adaptive Control. IEEE-ASME Trans. Mech. 2018, 23, 2896–2908. [Google Scholar] [CrossRef]
- Saadat, J.; Moallem, P.; Koofigar, H. Training Echo State Neural Network Using Harmony Search Algorithm. Int. J. Artif. Intell. 2017, 15, 163–179. [Google Scholar]
- Vrkalovic, S.; Lunca, E.C.; Borlea, I.D. Model-free sliding mode and fuzzy controllers for reverse osmosis desalination plants. Int. J. Artif. Intell. 2018, 16, 208–222. [Google Scholar]
No. | Criteria | References | Frameworks |
---|---|---|---|
1 | Armstrong [33] | deterministic | |
2 | Gautier and Khali [24] | deterministic | |
3 | Gautier and Khali [24] | deterministic | |
4 | Presse and Gautier [34] | deterministic | |
5 | Swevers et al. [10] | statistical (D-optimality) | |
6 | Jingfu et al. [25] | deterministic (Hadamard’s inequality) | |
7 | Miguel et al. [37] | statistical |
Trajectories | Optimization Criteria | |||||
---|---|---|---|---|---|---|
F1 = Cond(F) | F2 = −log(det(FTΣ−1F)−1) | F3 = multi-objective | ||||
F1 | F2 | F1 | F2 | F1 | F2 | |
1 | 8.9564 | −46.8065 | 14.0528 | −75.3467 | 7.9318 | −75.6224 |
2 | 4.5228 | −56.7127 | 9.9266 | −74.1939 | 7.8595 | −76.3168 |
3 | 5.4290 | −53.1933 | 9.236 | −69.6214 | 7.9149 | −75.7974 |
4 | 4.0043 | −58.1891 | 10.8305 | −77.0334 | 7.9156 | −75.9591 |
Trajectories | Goal Weight Values | |||||
---|---|---|---|---|---|---|
F3 ω1 = 5, ω2 = −70 | F4 ω2 = −75 | F4 ω2 = −70 | ||||
F1 | F2 | F1 | F2 | F1 | F2 | |
1 | 5.0354 | −69.5180 | 6.9067 | −75.0035 | 6.5072 | −70.01 |
2 | 4.9852 | −70.2078 | 7.8303 | −75.1107 | 5.0119 | −70.0229 |
3 | 5.0671 | −69.0545 | 8.2943 | −75.0018 | 5.5365 | −70.0113 |
4 | 5.0431 | −69.396 | 7.7889 | −75.0008 | 4.8974 | −70.0218 |
Index | F1 | F2 | F3 | F4 | ||||
---|---|---|---|---|---|---|---|---|
pb | σi | pb | σi | pb | σi | pb | σi | |
1 | 0.0157 | 1.99 | 0.0235 | 0.94 | 0.1161 | 0.56 | 0.1088 | 0.81 |
2 | 0.0894 | 0.2 | 0.0241 | 0.22 | 0.0216 | 0.95 | 0.0126 | 1.3 |
3 | 0.0023 | 9.5 | 0.0017 | 4.5 | 0.0363 | 0.57 | 0.0329 | 0.86 |
4 | 4.1514 | 0.009 | 3.9575 | 0.011 | 4.0847 | 0.036 | 4.0530 | 0.049 |
5 | 1.2168 | 0.018 | 1.2257 | 0.017 | 1.2357 | 0.08 | 1.2641 | 0.11 |
6 | 0.1253 | 0.34 | 0.0918 | 0.38 | 0.0146 | 6.91 | 0.0742 | 1.85 |
7 | 0.1982 | 0.087 | 0.0675 | 0.46 | 0.1390 | 0.91 | 0.2511 | 0.69 |
8 | 0.1123 | 0.37 | 0.0429 | 0.55 | 0.0273 | 3.37 | 0.0259 | 4.84 |
9 | 0.0692 | 0.21 | 0.1072 | 0.23 | 0.0767 | 1.65 | 0.0930 | 1.84 |
mean | 1.41 | 0.81 | 1.67 | 1.37 |
Noise (σ1, σ2) | pb | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
F2 | (5.0832,0.0499) | 0.0235 | 0.0241 | 0.0017 | 3.9575 | 1.2257 | 0.0918 | 0.0675 | 0.0429 | 0.1072 |
(0.0516,0.0161) | 0.0458 | 0.0065 | 0.0189 | 3.9864 | 1.2145 | 0.0340 | 0.0972 | 0.0533 | 0.1111 | |
(8,1) | 0.0384 | 0.0123 | 0.0132 | 3.9776 | 1.2161 | 0.0526 | 0.0876 | 0.0486 | 0.1083 | |
F4 | (5.0832,0.0499) | 0.1088 | 0.0126 | 0.0329 | 4.0530 | 1.2641 | 0.0742 | 0.2511 | 0.0259 | 0.0930 |
(0.0516,0.0161) | 0.1072 | 0.0100 | 0.0313 | 4.0530 | 1.2492 | 0.0747 | 0.2509 | 0.0280 | 0.0923 | |
(8,1) | 0.1079 | 0.0113 | 0.0321 | 4.0528 | 1.2579 | 0.0745 | 0.2510 | 0.0269 | 0.0972 |
Joints | F4 | Validation |
---|---|---|
Joint1 | 0.227 | 0.235 |
Joint2 | 0.127 | 0.195 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Zhang, M.; Zang, X.; Zhang, H.; Zhao, J. Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design. Sensors 2019, 19, 2248. https://doi.org/10.3390/s19102248
Jia J, Zhang M, Zang X, Zhang H, Zhao J. Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design. Sensors. 2019; 19(10):2248. https://doi.org/10.3390/s19102248
Chicago/Turabian StyleJia, Jidong, Minglu Zhang, Xizhe Zang, He Zhang, and Jie Zhao. 2019. "Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design" Sensors 19, no. 10: 2248. https://doi.org/10.3390/s19102248
APA StyleJia, J., Zhang, M., Zang, X., Zhang, H., & Zhao, J. (2019). Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design. Sensors, 19(10), 2248. https://doi.org/10.3390/s19102248