Detecting Variable Resistance by Fluorescence Intensity Ratio Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Experimental Device and Spectral Measurement
3.2. Detecting Resistance Based on the FIR of 543 nm/524 nm
3.3. Detecting Resistance Based on the FIR of 543 nm/658 nm
3.4. Sensitivity Stability of Sensor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80. [Google Scholar] [CrossRef]
- Chua, L.O.; Desoer, C.A.; Kuh, E.S. Linear and nonlinear circuits. N. Y. McGraw-Hill 1987, 10, 277–286. [Google Scholar]
- Bueno, P.R.; Pianaro, S.A.; Pereira, E.C.; Bulhoes, L.O.S.; Longo, E.; Varela, J.A. Investigation of the electrical properties of SnO 2 varistor system using impedance spectroscopy. J. Appl. Phys. 1998, 84, 3700–3705. [Google Scholar] [CrossRef]
- Greuter, F.; Blatter, G. Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semicond. Sci. Technol. 1990, 5, 111. [Google Scholar] [CrossRef]
- Vakiv, M.; Shpotyuk, O.; Mrooz, O.; Hadzaman, I. Controlled thermistor effect in the system CuxNi1–x–yCo2yMn2-yO4. J. Eur. Ceram. Soc. 2001, 21, 1783–1785. [Google Scholar] [CrossRef]
- Chen, D.; Wan, Z.; Zhou, Y.; Zhou, X.; Yu, Y.; Zhong, J.; Ding, M.; Ji, Z. Dual-phase glass ceramic: Structure, dual-modal luminescence, and temperature sensing behaviors. ACS Appl. Mater. Interfaces 2015, 7, 19484–19493. [Google Scholar] [CrossRef]
- Shi, R.; Ning, L.; Huang, Y.; Tao, Y.; Zheng, L.; Li, Z.; Liang, H. Li4SrCa (SiO4)2: Eu2+: A potential temperature sensor with unique optical thermometric properties. ACS Appl. Mater. Interfaces 2019, 11, 9691–9695. [Google Scholar] [CrossRef]
- Wang, X.D.; Wolfbeis, O.S.; Meier, R.J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 2013, 42, 7834–7869. [Google Scholar] [CrossRef]
- Xu, W.; Gao, X.; Zheng, L.; Zhang, Z.; Cao, W. An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic. Sens. Actuators B Chem. 2012, 173, 250–253. [Google Scholar] [CrossRef]
- Xu, W.; Gao, X.; Zheng, L.; Wang, P.; Zhang, Z.; Cao, W. Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor. Appl. Phys. Express 2012, 5, 072201. [Google Scholar] [CrossRef]
- Suo, H.; Hu, F.; Zhao, X.; Zhang, Z.; Li, T.; Duan, C.; Guo, C. All-in-one thermometer-heater up-converting platform YF3: Yb3+, Tm3+ operating in the first biological window. J. Mater. Chem. C 2017, 5, 1501–1507. [Google Scholar] [CrossRef]
- Saka, M.; Sun, Y.X.; Ahmed, S.R. Heat conduction in a symmetric body subjected to a current flow of symmetric input and output. Int. J. Therm. Sci. 2009, 48, 114–121. [Google Scholar] [CrossRef]
- Lee, G.; Park, Y. Lanthanide-doped upconversion nanocarriers for drug and gene delivery. Nanomaterials 2018, 8, 511. [Google Scholar] [CrossRef]
- Gong, G.; Xie, S.; Song, Y.; Tan, H.; Xu, J.; Zhang, C.; Xu, L. Synthesis of lanthanide-ion-doped NaYF4 RGB up-conversion nanoparticles for anti-counterfeiting Application. J. Nanosci. Nanotechnol. 2018, 18, 8207–8215. [Google Scholar] [CrossRef]
- Kostiv, U.; Lobaz, V.; Kučka, J.; Švec, P.; Sedláček, O.; Hrubý, M.; Horák, D. A simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale 2017, 9, 16680–16688. [Google Scholar] [CrossRef] [PubMed]
- Chander, N.; Khan, A.F.; Komarala, V.K.; Chawla, S.; Dutta, V. Enhancement of dye sensitized solar cell efficiency via incorporation of upconverting phosphor nanoparticles as spectral converters. Prog. Photovolt. Prog. Photovolt. Res. Appl. 2016, 24, 692–703. [Google Scholar] [CrossRef]
- Luoshan, M.; Bai, L.; Bu, C.; Liu, X.; Zhu, Y.; Guo, K.; Zhao, X. Surface plasmon resonance enhanced multi-shell-modified upconversion NaYF4:Yb3+, Er3+@SiO2@Au@TiO2 crystallites for dye-sensitized solar cells. J. Power Sour. 2016, 307, 468–473. [Google Scholar] [CrossRef]
- Gangwar, A.K.; Gupta, A.; Kedawat, G.; Kumar, P.; Singh, B.P.; Singh, N.; Gupta, B.K. Highly luminescent dual mode polymeric nanofiber based flexible mat for white security paper and encrypted nanotaggant applications. Chem.-Eur. J. 2018, 24, 9477–9484. [Google Scholar] [CrossRef]
- Huo, L.; Zhou, J.; Wu, R.; Ren, J.; Zhang, S.; Zhang, J.; Xu, S. Dual-functional β-NaYF4: Yb3+, Er3+ nanoparticles for bioimaging and temperature sensing. Opt. Mater. Express 2016, 6, 1056–1064. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nanosci. Technol. A Collect. Rev. Nat. J. 2010, 11–19. [Google Scholar] [CrossRef]
- Kataria, M.; Yadav, K.; Haider, G.; Liao, Y.M.; Liou, Y.R.; Cai, S.Y.; Lee, H.M. Transparent, wearable, broadband, and highly sensitive upconversion nanoparticles and graphene-based hybrid photodetectors. ACS. Photonics 2018, 5, 2336–2347. [Google Scholar] [CrossRef]
- Rana, K.P.S.; Kumar, V.; Dagar, A.K.; Chandel, A.; Kataria, A. FPGA implementation of steinhart–hart equation for accurate thermistor linearization. IEEE. Sens. J. 2018, 18, 2260–2267. [Google Scholar] [CrossRef]
- Murmu, A.; Bhattacharyya, B.; Munshi, S. A synergy of voltage-to-frequency converter and continued-fraction algorithm for processing thermocouple signals. Measurement 2018, 116, 514–522. [Google Scholar] [CrossRef]
- Yu, S.H.; Choi, M.S.; Yoo, P.J.; Park, J.H.; Park, J.H.; Cho, J.H.; Lee, J.Y. Temperature sensing behavior of poly (3, 4-ethylenedioxythiophene) thin film. Synthetic. Met. 2013, 185, 52–55. [Google Scholar] [CrossRef]
- Chen, Y.; Pötschke, P.; Pionteck, J.; Voit, B.; Qi, H. Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications. J. Mater. Chem. A 2018, 6, 7777–7785. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Lee, D.S.; Choi, H.K.; Lee, D.H.; Kim, J.E.; Lee, J.Y.; Choi, S.Y. Flexible room-temperature NO 2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl. Phys. Lett. 2010, 96, 213105. [Google Scholar] [CrossRef]
- de Vasconcelos, E.A.; Khan, S.A.; Zhang, W.Y.; Uchida, H.; Katsube, T. Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide. Sensor Actuat. A-phys. 2000, 83, 167–171. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Yu, W.; Wang, K.; Wei, J.; Wu, D.; Ruoff, R.S. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Bao, Z.; Wang, L.; Yue, X. Comparison of voltammetry and digital bridge methods for electrical resistance measurements in wood. Comput. Electron. Agric. 2018, 145, 161–168. [Google Scholar] [CrossRef]
- Sasaki, H.; Nishinaka, H.; Shida, K. A modified Wheatstone bridge for high-precision automated resistance measurement. Jpn. J. Appl. Phys. 1987, 26, L1947. [Google Scholar] [CrossRef]
- Wu, S.; Sun, X.; Zhu, J.; Chang, J.; Zhang, S. Increasing electrical conductivity of upconversion materials by in situ binding with graphene. Nanotechnolog 2016, 27, 345703. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Pan, K.; Jiang, B.; Tian, C.; Zhou, W.; Fu, H. NaYF4: Er 3+/Yb 3+-graphene composites: Preparation, upconversion luminescence, and application in dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 20381–20386. [Google Scholar] [CrossRef]
- Yin, M.; Wu, L.; Li, Z.; Ren, J.; Qu, X. Facile in situ fabrication of graphene–upconversion hybrid materials with amplified electrogenerated chemiluminescence. Nanoscale 2012, 4, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.X.; Zhang, Y.W.; Sun, L.D.; Yan, C.H. Size-and phase-controlled synthesis of monodisperse NaYF4:Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem. 2007, 111, 13730–13739. [Google Scholar] [CrossRef]
- Yi, G.S.; Chow, G.M. Synthesis of hexagonal-phase NaYF4:Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329. [Google Scholar] [CrossRef]
- Runowski, M.; Stopikowska, N.; Szeremeta, D.; Goderski, S.; Skwierczyńska, M.; Lis, S. Up-converting lanthanide fluoride core@shell nanorods for luminescent thermometry in the first and second biological windows-β-NaYF4: Yb3+, Er3+@ SiO2 temperature sensor. ACS Appl. Mater. Interfaces 2019. [Google Scholar] [CrossRef]
- Radunz, S.; Schavkan, A.; Wahl, S.; Würth, C.; Tschiche, H.R.; Krumrey, M.; Resch-Genger, U. Evolution of size and optical properties of upconverting nanoparticles during high-temperature synthesis. J. Phys. Chem. 2018, 122, 28958–28967. [Google Scholar] [CrossRef]
- Kostiv, U.; Patsula, V.; Noculak, A.; Podhorodecki, A.; Větvička, D.; Poučková, P.; Horák, D. Phthalocyanine-conjugated upconversion NaYF4:Yb3+/Er3+@SiO2 nanospheres for NIR-triggered photodynamic therapy in a tumor mouse model. ChemMedChem 2017, 12, 2066–2073. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Yang, C.; Huang, X. Joule heating induced transient temperature field and its effects on electroosmosis in a microcapillary packed with microspheres. Langmuir 2005, 21, 7598–7607. [Google Scholar] [CrossRef]
- Ghosh, S. Fundamentals of Electrical and Electronics Engineering, 2nd ed.; Asoke, K., Ghosh, Eds.; PHI Learning Private Limited: New Delhi, India, 2007; ISBN 978-81-203-3299-7. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, W.; Wang, X.; Tao, Y.; Yan, X. Detecting Variable Resistance by Fluorescence Intensity Ratio Technology. Sensors 2019, 19, 2400. https://doi.org/10.3390/s19102400
Sheng W, Wang X, Tao Y, Yan X. Detecting Variable Resistance by Fluorescence Intensity Ratio Technology. Sensors. 2019; 19(10):2400. https://doi.org/10.3390/s19102400
Chicago/Turabian StyleSheng, Wanjun, Xiangfu Wang, Yong Tao, and Xiaohong Yan. 2019. "Detecting Variable Resistance by Fluorescence Intensity Ratio Technology" Sensors 19, no. 10: 2400. https://doi.org/10.3390/s19102400
APA StyleSheng, W., Wang, X., Tao, Y., & Yan, X. (2019). Detecting Variable Resistance by Fluorescence Intensity Ratio Technology. Sensors, 19(10), 2400. https://doi.org/10.3390/s19102400