Pseudo-Random Encryption for Security Data Transmission in Wireless Sensor Networks
Abstract
:1. Introduction
2. The Description of the Security Model
2.1. System Model
2.2. Flipping Encryption
2.3. The Fusion Result of the AFC
3. Security Analysis
4. Generalization to the Multiple Decisions
- Step 1 initialize , , j = 2, n = number of scales;
- Step 2 , ;
- Step 3 if update; , go to step 5, else , endif;
- Step 4 if , endif, go to Step 3;
- Step 5 set .
5. Simulation Results
5.1. Experiments on Binary Hypothesis Testing
5.2. Experiment on Multiple Scales
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reyes-Menendez, A.; Palos-Sanchez, P.; Saura, J.R.; Martin-Velicia, F. Understanding the Influence of Wireless Communications and Wi-Fi Access on Customer Loyalty: A Behavioral Model System. Wirel. Commun. Mob. Com. 2018, 2018, 1–16. [Google Scholar] [CrossRef]
- Saura, J.R.; Reyes-Menendez, A.; Palos-Sanchez, P. Mapping multispectral Digital Images using a Cloud Computing software: Applications from UAV images. Heliyon 2019, 5, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Shigen, S.; Hongjie, L.; Risheng, H.; Athanasios, V.V.; Yihan, W.; Qiying, C. Differential game-based strategies for preventing malware propagation in wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1962–1973. [Google Scholar] [CrossRef]
- Murat, D.; Yunus, O.; Cevat, B. Fire detection systems in wireless sensor networks. Procedia Soc. Behav. Sci. 2015, 195, 1846–1850. [Google Scholar]
- Huang, D.J.; Teng, W.C. A defense against clock skew replication attacks in wireless sensor networksoriginal research article. J. Netw. Comput. Appl. 2015, 39, 26–37. [Google Scholar] [CrossRef]
- He, D.; Chan, S.; Guizani, M. Accountable and privacy–enhanced access control in wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 2015, 14, 389–398. [Google Scholar] [CrossRef]
- Soltanmohammadi, E.; Oroojiand, M.; Naraghi–Pour, M. Decentralized hypothesis testing in wireless sensor networks in the presence of misbehaving nodes. IEEE Trans. Inf. Forensics Secur. 2013, 8, 205–215. [Google Scholar] [CrossRef]
- Moosavi, H.; Bui, F.M. A game–theoretic framework for robust optimal intrusion detection in wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1367–1379. [Google Scholar] [CrossRef]
- Uluagac, A.S.; Beyah, R.A.; Copeland, J.A. Secure source–based loose synchronization (sobas) for wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2013, 24, 803–813. [Google Scholar] [CrossRef]
- Yanrong, L.; Lixiang, L.; Haipeng, P.; Yixian, Y. An Energy Efficient Mutual Authentication and Key Agreement Scheme Preserving Anonymity for Wireless Sensor Networks. Sensors 2016, 16, 837–8576. [Google Scholar]
- Dawei, Z.; Haipeng, P.; Lixiang, L.; Yixian, Y. A secure and effective anonymous authentication scheme for roaming service in global mobility networks. Wirel. Pers. Commun. 2014, 78, 247–269. [Google Scholar]
- Akyildiz, I.F.; Su, Y.S.W.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–442. [Google Scholar] [CrossRef]
- Incebacak, D.; Bicakci, K.; Tavli, B. Evaluating energy cost of route diversity for security in wireless sensor networksoriginal. Comput. Stand. Interfaces 2015, 39, 44–57. [Google Scholar] [CrossRef]
- Aysal, T.C.; Barner, K. Sensor data cryptography in wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 2008, 3, 273–289. [Google Scholar] [CrossRef]
- Pour, M.N.; Nadendla, V. Secure detection in wireless sensor networks using a simple encryption method. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Cancun, Mexico, 28–31 March 2011; pp. 114–119. [Google Scholar]
- Soosahabi, R.; Naraghi–Pour, M.; Perkins, D.; Bayoumi, M.A. Optimal probabilistic encryption for secure detection in wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 2014, 9, 375–385. [Google Scholar] [CrossRef]
- Marano, S.; Matta, V.; Willett, P.K. Distributed detection with censoring sensors under physical layer secrecy. IEEE Trans. Signal Process. 2009, 57, 1976–1986. [Google Scholar] [CrossRef]
- Jeon, H.; Choit, J.; McLaughlin, S.W.; Ha, J. Channel aware encryption and decision fusion for wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 2013, 8, 619–625. [Google Scholar] [CrossRef]
- Matsumoto, M.; Nishimura, T. Mersenne Twister: A 623–Dimensionally Equidistributed Uniform Pseudo–Random Number Generator. ACM Trans. Model. Comput. Simul. 1998, 8, 3–30. [Google Scholar] [CrossRef]
- Naor, M. Number–Theoretic Constructions of Efficient Pseudo–Random Functions. J. ACM 2004, 51, 231–262. [Google Scholar] [CrossRef]
- Wichmann, B.A.; Hill, I.D. An Efficient and Portable Pseudo–random Number Generator. J. R. Stat. Soc. Ser. C Appl. Stat. 1982, 31, 188–190. [Google Scholar]
- Liu, Y.; Draper, S.C.; Sayeed, A.M. Exploiting channel diversity in secret key generation from multipath fading randomness. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1484–1497. [Google Scholar] [CrossRef]
- Wallace, J.; Sharma, R. Automatic secret keys from reciprocal MIMO wireless channels: Measurement and analysis. IEEE Trans. Inf. Forensics Secur. 2010, 5, 381–392. [Google Scholar]
- Ye, C.; Mathur, S.; Reznik, A.; Shah, Y.; Trappe, W.; Mandayam, N. Information–theoretically secret key generation for fading wireless channels. IEEE Trans. Inf. Forensics Secur. 2010, 5, 240–254. [Google Scholar]
- Varshney, P. Distributed Detection and Data Fusion, 1st ed.; Springer: Berlin, Germany, 2005; pp. 180–189. [Google Scholar]
- Chen, B.; Jiang, R.; Kasetkasem, T.; Varshney, P.K. Channel aware decision fusion in wireless sensor networks. IEEE Trans. Signal Process. 2006, 52, 3454–3458. [Google Scholar] [CrossRef]
- Guerriero, M.; Svensson, L.; Willett, P. Bayesian Data Fusion for Distributed Target Detection in Sensor Networks. IEEE Trans. Signal Process. 2010, 58, 3417–3421. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Chen, W.; Li, T.; Liu, Y. Pseudo-Random Encryption for Security Data Transmission in Wireless Sensor Networks. Sensors 2019, 19, 2452. https://doi.org/10.3390/s19112452
Liu L, Chen W, Li T, Liu Y. Pseudo-Random Encryption for Security Data Transmission in Wireless Sensor Networks. Sensors. 2019; 19(11):2452. https://doi.org/10.3390/s19112452
Chicago/Turabian StyleLiu, Liang, Wen Chen, Tao Li, and Yuling Liu. 2019. "Pseudo-Random Encryption for Security Data Transmission in Wireless Sensor Networks" Sensors 19, no. 11: 2452. https://doi.org/10.3390/s19112452
APA StyleLiu, L., Chen, W., Li, T., & Liu, Y. (2019). Pseudo-Random Encryption for Security Data Transmission in Wireless Sensor Networks. Sensors, 19(11), 2452. https://doi.org/10.3390/s19112452