Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data and Variables
3.2. Landslide Susceptibility Models
3.2.1. Logistic Regression Model
3.2.2. Random Forest Model
3.2.3. Verification of Model Accuracy
3.3. SBAS-InSAR
3.4. Refinement
4. Results
4.1. Logistic Regression Results
4.2. Random Forest Results
4.3. SBAS-InSAR Results
4.4. Refining the Results
4.5. Results of Specific Cases
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, P.V.; Sharma, M.C. Probabilistic Landslide Susceptibility Mapping along Tipri to Ghuttu Highway Corridor, Garhwal Himalaya (India). Remote Sens. Appl. Soc. Environ. 2017, 8, 1–11. [Google Scholar]
- Allan, N.J.R. Kashgar to Islamabad: The Impact of the Karakorum Highway on Mountain Society and Habitat. Scott. Geogr. Mag. 2008, 105, 130–141. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Zhu, Y.Y.; Zou, D.H.S.; Liao, L.P. Activity Degree Evaluation of Glacial Debris Flow Along International Karakorum Highway (Kkh) Based on Fuzzy Theory. Adv. Mater. Res. 2011, 261–263, 1167–1171. [Google Scholar] [CrossRef]
- Liao, L.P.; Zhu, Y.Y.; Zou, D.H.S.; Yang, Z.Q.; Muhammad, W.; Chen, J.D.; Wang, Y.; Ye, C.Y. Key Point of Bridge Damage Caused by Glacial Debris Flows Along International Karakorum Highway, Pakistan. Appl. Mech. Mater. 2012, 256–259, 2713–2723. [Google Scholar] [CrossRef]
- Hewitt, K. Catastrophic Landslides and Their Effects on the Upper Indus Streams, Karakoram Himalaya, Northern Pakistan. Geomorphology 1998, 26, 47–80. [Google Scholar] [CrossRef]
- Sato, H.P.; Hasegawa, H.; Fujiwara, S.; Tobita, M.; Koarai, M.; Une, H.; Iwahashi, J. Interpretation of Landslide Distribution Triggered by the 2005 Northern Pakistan Earthquake Using Spot 5 Imagery. Landslides 2006, 4, 113–122. [Google Scholar] [CrossRef]
- Chen, X.; Cui, P.; You, Y.; Cheng, Z.; Khan, A.; Ye, C.; Zhang, S. Dam-Break Risk Analysis of the Attabad Landslide Dam in Pakistan and Emergency Countermeasures. Landslides 2016, 14, 675–683. [Google Scholar] [CrossRef]
- Ding, M.; Huai, B.; Sun, W.; Wang, Y.; Zhang, D.; Guo, X.; Zhang, T. Surge-Type Glaciers in Karakoram Mountain and Possible Catastrophes Alongside a Portion of the Karakoram Highway. Nat. Hazards 2017, 90, 1017–1020. [Google Scholar] [CrossRef]
- Lulseged, A.; Yamagishi, H. The Application of Gis-Based Logistic Regression for Landslide Susceptibility Mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar]
- Yalcin, A. Gis-Based Landslide Susceptibility Mapping Using Analytical Hierarchy Process and Bivariate Statistics in Ardesen (Turkey): Comparisons of Results and Confirmations. CATENA 2008, 72, 1–12. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide Susceptibility Assessment and Factor Effect Analysis: Backpropagation Artificial Neural Networks and Their Comparison with Frequency Ratio and Bivariate Logistic Regression Modelling. Environ. Model. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Xu, C.; Dai, F.; Xu, X.; Lee, Y.H. Gis-Based Support Vector Machine Modeling of Earthquake-Triggered Landslide Susceptibility in the Jianjiang River Watershed, China. Geomorphology 2012, 145–146, 70–80. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide Susceptibility Mapping Using Random Forest, Boosted Regression Tree, Classification and Regression Tree, and General Linear Models and Comparison of Their Performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2015, 13, 839–856. [Google Scholar] [CrossRef]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Ann. Rev. Earth Planet 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Rott, H.; Nagler, T. The Contribution of Radar Interferometry to the Assessment of Landslide Hazards. Adv. Space Res. 2006, 37, 710–719. [Google Scholar] [CrossRef]
- Oliveira, S.C.; Zêzere, J.L.; Catalão, J.; Nico, G. The Contribution of Psinsar Interferometry to Landslide Hazard in Weak Rock-Dominated Areas. Landslides 2014, 12, 703–719. [Google Scholar] [CrossRef]
- Piacentini, D.; Devoto, S.; Mantovani, M.; Pasuto, A.; Prampolini, M.; Soldati, M. Landslide Susceptibility Modeling Assisted by Persistent Scatterers Interferometry (Psi): An Example from the Northwestern Coast of Malta. Nat. Hazards 2015, 78, 681–697. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential Sar Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A Small-Baseline Approach for Investigating Deformations on Full-Resolution Differential Sar Interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Jordan, C.; Novellino, A.; Dijkstra, T.; Chen, G. Investigating Slow-Moving Landslides in the Zhouqu Region of China Using Insar Time Series. Landslides 2018, 15, 1299–1315. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Y.; Zeng, R.; Yang, Z.; Chen, X.; Zhao, F.; Meng, X. Detection of Land Subsidence Associated with Land Creation and Rapid Urbanization in the Chinese Loess Plateau Using Time Series Insar: A Case Study of Lanzhou New District. Remote Sens. 2018, 10, 270. [Google Scholar] [CrossRef]
- Qu, C.; Zhang, G.; Shan, X.; Zhang, G.; Song, X.; Liu, Y. Coseismic Deformation Derived from Analyses of C and L Band Sar Data and Fault Slip Inversion of the Yushu Ms7.1 Earthquake, China in 2010. Tectonophysics 2013, 584, 119–128. [Google Scholar] [CrossRef]
- Lanari, R.; Casu, F.; Manzo, M.; Lundgren, P. Application of the Sbas-Dinsar Technique to Fault Creep: A Case Study of the Hayward Fault, California. Remote Sens. Environ. 2007, 109, 20–28. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.-W.; Wu, L.-X.; Xu, B.; Hu, J.; Zhou, Y.-S.; Miao, Z.-L. Deriving a Time Series of 3d Glacier Motion to Investigate Interactions of a Large Mountain Glacial System with Its Glacial Lake: Use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset Technique. J. Hydrol. 2018, 559, 596–608. [Google Scholar] [CrossRef]
- Searle, M.P.; Khan, M.A.; Fraser, J.E.; Gough, S.J.; Jan, M.Q. The Tectonic Evolution of the Kohistan-Karakoram Collision Belt along the Karakoram Highway Transect, North Pakistan. Tectonics 1999, 18, 929–949. [Google Scholar] [CrossRef]
- Ge, Y.G.; Su, F.H.; Chen, X.Q.; Zhang, J.Q. Destructions on the Karakoram Highway (Kkh) from Sost to Khunjerab Induced by Geo-Hazards and Prevention. Appl. Mech. Mater. 2015, 744–746, 1234–1243. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Panahi, M.; Kornejady, A.; Wang, J.; Xie, X.; Cao, S. Spatial Prediction of Landslide Susceptibility Using an Adaptive Neuro-Fuzzy Inference System Combined with Frequency Ratio, Generalized Additive Model, and Support Vector Machine Techniques. Geomorphology 2017, 297, 69–85. [Google Scholar] [CrossRef]
- Ciampalini, A.; Raspini, F.; Lagomarsino, D.; Catani, F.; Casagli, N. Landslide Susceptibility Map Refinement Using Psinsar Data. Remote Sens. Environ. 2016, 184, 302–315. [Google Scholar] [CrossRef]
- Bai, S.-B.; Wang, J.; Lü, G.-N.; Zhou, P.-G.; Hou, S.-S.; Xu, S.-N. Gis-Based Logistic Regression for Landslide Susceptibility Mapping of the Zhongxian Segment in the Three Gorges Area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Pourghasemi, H.R.; Pourtaghi, Z.S. Landslide Susceptibility Assessment in Lianhua County (China): A Comparison between a Random Forest Data Mining Technique and Bivariate and Multivariate Statistical Models. Geomorphology 2016, 259, 105–118. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Vanwalleghem, T.; Poesen, J.; Govers, G.; Verstraeten, G.; Vandekerckhove, L. Prediction of Landslide Susceptibility Using Rare Events Logistic Regression: A Case-Study in the Flemish Ardennes (Belgium). Geomorphology 2006, 76, 392–410. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar Interferogram Filtering for Geophysical Applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Costantini, M. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Q.; Ding, X.L.; Zhao, C.Y.; Zhang, J.; Qu, F.F. Surface Deformation Analysis of Xian (China) in 2009 Carried out with Refined Sbas-Dinsar. Proc. SPIE 2011, 8286, 82861H. [Google Scholar]
- Gaber, A.; Darwish, N.; Koch, M. Minimizing the Residual Topography Effect on Interferograms to Improve Dinsar Results: Estimating Land Subsidence in Port-Said City, Egypt. Remote Sens. 2017, 9, 752. [Google Scholar] [CrossRef]
- Schlögel, R.; Doubre, C.; Malet, J.-P.; Masson, F. Landslide Deformation Monitoring with Alos/Palsar Imagery: A D-Insar Geomorphological Interpretation Method. Geomorphology 2015, 231, 314–330. [Google Scholar] [CrossRef]
- Bui, D.T.; Tuan, T.A.; Hoang, N.-D.; Thanh, N.Q.; Nguyen, D.B.; van Liem, N.; Pradhan, B. Spatial Prediction of Rainfall-Induced Landslides for the Lao Cai Area (Vietnam) Using a Hybrid Intelligent Approach of Least Squares Support Vector Machines Inference Model and Artificial Bee Colony Optimization. Landslides 2016, 14, 447–458. [Google Scholar]
- Han, H.; Guo, X.; Yu, H. Variable Selection Using Mean Decrease Accuracy and Mean Decrease Gini Based on Random Forest. In Proceedings of the IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016. [Google Scholar]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.C.; Guerrero, J.; Notti, D.; Galve, J.P.; Fernández-Merodo, J.A.; Cooksley, G. Multi-Sensor Advanced Dinsar Monitoring of Very Slow Landslides: The Tena Valley Case Study (Central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Ciappa, A.; Pietranera, L.; Battazza, F. Perito Moreno Glacier (Argentina) Flow Estimation by Cosmo Skymed Sequence of High-Resolution Sar-X Imagery. Remote Sens. Environ. 2010, 114, 2088–2096. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, G.; Meng, X.; Zhang, Y.; Qiao, L.; Tan, L. A Comparative Study of Landslide Susceptibility Mapping Using Weight of Evidence, Logistic Regression and Support Vector Machine and Evaluated by Sbas-Insar Monitoring: Zhouqu to Wudu Segment in Bailong River Basin, China. Environ. Earth Sci. 2017, 76, 313. [Google Scholar] [CrossRef]
- Chalkias, C.; Ferentinou, M.; Polykretis, C. Gis-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece. Geosciences 2014, 4, 176–190. [Google Scholar] [CrossRef]
Variable | TOL | VIF |
---|---|---|
Elevation | 0.611 | 1.638 |
Slope | 0.576 | 1.735 |
Aspect | 0.989 | 1.011 |
Profile curvature | 0.801 | 1.248 |
Planar curvature | 0.815 | 1.226 |
TWI | 0.958 | 1.044 |
NDVI | 0.916 | 1.092 |
Precipitation | 0.644 | 1.553 |
Distance from fault | 0.756 | 1.271 |
Lithology | 0.691 | 1.446 |
Vslope (mm/yr) | ||||||
---|---|---|---|---|---|---|
Susceptibility degree | 0–15 | 15–30 | 30–50 | 50–100 | >100 | |
1 | 0 | +1 | +2 | +3 | +4 | |
2 | 0 | 0 | +1 | +2 | +3 | |
3 | 0 | 0 | 0 | +1 | +2 | |
4 | 0 | 0 | 0 | 0 | +1 | |
5 | 0 | 0 | 0 | 0 | 0 |
B | S.E. | Wald | Sig. | |
---|---|---|---|---|
Elevation | −0.928 | 0.040 | 551.073 | 0.000 |
Slope | 1.022 | 0.032 | 991.807 | 0.000 |
Aspect | 0.080 | 0.023 | 12.127 | 0.000 |
Profile curvature | 0.298 | 0.032 | 89.027 | 0.000 |
Planar curvature | −0.125 | 0.025 | 24.136 | 0.000 |
TWI | 0.069 | 0.034 | 4.151 | 0.042 |
NDVI | −0.308 | 0.049 | 38.809 | 0.000 |
Precipitation | 0.496 | 0.034 | 215.025 | 0.000 |
Distance from fault | −0.566 | 0.036 | 246.496 | 0.000 |
Lithology | −0.021 | 0.017 | 1.520 | 0.218 |
Constant | −1.126 | 0.272 | 17.182 | 0.000 |
Landslide Susceptibility Degree | Original LSM | New LSM | Susceptibility Degree Increase | |||
---|---|---|---|---|---|---|
Class | No. Cells | % | No. Cells | % | Class | No. Cells |
1 | 481,668 | 57.11 | 480,041 | 56.91 | 0 | 840,628 |
2 | 166,190 | 19.70 | 167,670 | 19.88 | +1 | 1387 |
3 | 91,057 | 10.80 | 90,059 | 10.68 | +2 | 1084 |
4 | 56,650 | 6.71 | 57,130 | 6.77 | +3 | 305 |
5 | 47,880 | 5.68 | 48,536 | 5.76 | +4 | 32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Meng, X.; Zhang, Y.; Chen, G.; Su, X.; Yue, D. Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology. Sensors 2019, 19, 2685. https://doi.org/10.3390/s19122685
Zhao F, Meng X, Zhang Y, Chen G, Su X, Yue D. Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology. Sensors. 2019; 19(12):2685. https://doi.org/10.3390/s19122685
Chicago/Turabian StyleZhao, Fumeng, Xingmin Meng, Yi Zhang, Guan Chen, Xiaojun Su, and Dongxia Yue. 2019. "Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology" Sensors 19, no. 12: 2685. https://doi.org/10.3390/s19122685
APA StyleZhao, F., Meng, X., Zhang, Y., Chen, G., Su, X., & Yue, D. (2019). Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology. Sensors, 19(12), 2685. https://doi.org/10.3390/s19122685