A Highly Robust Silicon Ultraviolet Selective Radiation Sensor Using Differential Spectral Response Method †
Abstract
:1. Introduction
2. Sensor Design, Fabrication and Measurement Setup
2.1. Device Structure and Concept
2.2. Internal QE Estimation Using Light Penetration Depth
2.3. Photodiode Fabrication Process and Device Simulations
2.4. Device Fabrication
3. Measurement Results and Discussion
3.1. Spectral Response Measurement and Comparison with Simulation Results
3.2. UV Light Irradiation Stress Test
3.3. On-Chip Interference Interlayers as Band-Rejection Filters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reevila, E.; Ryan, M.J. Analysis of several phenolic compounds with potential antioxidant properties in grape extracts and wines by high-performance liquid chromatography–photodiode array detection without sample preparation. J. Chromatogr. A 2000, 881, 461–469. [Google Scholar] [CrossRef]
- Smith, W.A.; Lam, K.P. Exploratory analysis of UV-vis absorption spectra. In Proceedings of the 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; pp. 3359–3363. [Google Scholar] [CrossRef]
- Leong, Y.S.; Ker, P.J.K.; Jamaludin, M.Z.; Nomanbhay, S.M.; Ismail, A.; Abdullah, F.; Looe, H.M.; Lo, C.K. UV-Vis Spectroscopy: A New Approach for Assessing the Color Index of Transformer Insulating Oil. Sensors 2018, 18, 2175. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pang, L.X.; Liang, J.; Cheng, M.K.; Liang, J.J.; Chen, J.S.; Lai, Y.H.; Sou, I.K. A Compact Solid-State UV Flame Sensing System Based on Wide-Gap II–VI Thin Film Materials. IEEE Trans. Ind. Electron. 2018, 65, 2737–2744. [Google Scholar] [CrossRef]
- Middelburg, L.; Ghaderi, M.; Bossche, A.; Bastemeijer, J.; de Graaf, G.; Wolffenbuttel, R.; Soltis, R.; Visser, J. Combining impedance spectroscopy with optical absorption spectroscopy in the UV for biofuel composition measurement. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Torino, Italy, 22–25 May 2017. [Google Scholar] [CrossRef]
- Zahouily, K.K.; Decker, C.; Kaisersberger, E.; Gruener, M. Real time UV cure monitoring. Eur. Coat. J. 2003, 11, 14–34. [Google Scholar]
- Yamada, H.; Miura, N.; Okihara, M.; Hinohara, K. A UV sensor IC based on SOI technology for UV care application. In Proceedings of the SICE Annual Conference, Tokyo, Japan, 20–22 August 2008; pp. 317–320. [Google Scholar] [CrossRef]
- Djuric, Z.; Radulovic, K.; Trbojevic, N.; Lazic, A. Silicon resonant cavity enhanced UV flame detector. In Proceedings of the 23rd International Conference on Microelectronics, Nis, Serbia, 12–15 May 2002; pp. 239–242. [Google Scholar] [CrossRef]
- Ishii, H.; Nagase, M.; Ikeda, M.; Shiba, Y.; Shirai, Y.; Kuroda, R.; Sugawa, S. A high sensitivity compact gas concentration sensor using UV light and charge amplifier circuit. In Proceedings of the IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016. [Google Scholar] [CrossRef]
- Shi, L.; Sarubbi, F.; Nihtianov, S.N.; Nanver, L.K.; Scholtes, T.L.M.; Scholze, F. High performance silicon-based extreme ultraviolet (EUV) radiation detector for industrial application. In Proceedings of the 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 1877–1882. [Google Scholar] [CrossRef]
- Brown, D.M.; Downey, E.T.; Ghezzo, M.; Kretchmer, J.W.; Saia, R.J.; Liu, Y.S.; Edmond, J.A.; Gati, G.; Pimpley, J.M.; Schneider, W.E. Silicon carbide UV photodiodes. IEEE Trans. Electron Devices 1993, 40, 325–333. [Google Scholar] [CrossRef]
- Wright, N.; Horsfall, A. SiC Sensors: A review. J. Phys. D Appl. Phys. 2007, 40, 6345–6354. [Google Scholar] [CrossRef]
- Razeghi, M.; Rogalski, A. Semiconductor ultraviolet detectors. J. Appl. Phys. 1996, 79, 7433–7473. [Google Scholar] [CrossRef]
- Aoyagi, Y.; Fujihara, Y.; Murata, M.; Shike, H.; Kuroda, R.; Sugawa, S. A CMOS image sensor with dual pixel reset voltage for high accuracy ultraviolet light absorption spectral imaging. Jpn. J. Appl. Phys. 2019, 58, SBBL03. [Google Scholar] [CrossRef]
- Nanver, L.K.; Qi, L.; Mohammadi, V.; Mok, K.M.; Boer, W.B.; Golshani, N.; Sammak, A.; Scholtes, T.L.; Gottwald, A.; Kroth, U.; et al. Robust UV/VUV/EUV PureB Photodiode Detector Technology With High CMOS Compatibility. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 306–316. [Google Scholar] [CrossRef]
- Shi, L.; Nihtianov, S.; Scholze, F.; Gottwald, A.; Nanver, L. High-sensitivity high-stability silicon photodiodes for DUV, VUV and EUV spectral ranges. In Proceedings of the SPIE 2011, San Diego, CA, USA, 13 September 2011; Volume 8145. [Google Scholar] [CrossRef]
- Blacksberg, J.; Nikzad, S.; Hoenk, M.E.; Holland, S.E.; Kolbe, W.F. Near-100% Quantum Efficiency of Delta Doped Large-Format UV-NIR Silicon Imagers. IEEE Trans. Electron Devices 2008, 55, 3402–3406. [Google Scholar] [CrossRef]
- Okino, T.; Yamahira, S.; Yamada, S.; Hirose, Y.; Odagawa, A.; Kato, Y.; Tanaka, T. A Real-Time Ultraviolet Radiation Imaging System Using an Organic Photoconductive Image Sensor. Sensors 2018, 18, 314. [Google Scholar] [CrossRef] [PubMed]
- Li, F.M.; O, N.; Nathan, A. Degradation Behavior and Damage Mechanisms of CCD Image Sensor with Deep-UV Laser Radiation. IEEE Trans. Electron Devices 2004, 51, 2229–2236. [Google Scholar] [CrossRef]
- Watanabe, T.; Park, J.-H.; Aoyama, S.; Isobe, K.; Kawahito, S. Effects of Negative Bias Operation and Optical Stress on Dark Current. In Proceedings of the International Image Sensor Workshop, Bergen, Norway, 25–28 June 2009; Volume 8. [Google Scholar]
- Kuroda, R.; Kawada, T.; Nakazawa, K.; Sugawa, S. Highly ultraviolet light sensitive and highly reliable photodiode with atomically flat Si surface. In Proceedings of the International Image Sensor Workshop, Hokkaido, Japan, 8–11 June 2011; pp. 38–41. [Google Scholar]
- Nakazawa, T.; Kuroda, R.; Koda, Y.; Sugawa, S. Photodiode dopant structure with atomically flat Si surface for high-sensitivity and stability to UV light. In Proceedings of the IS&T/SPIE Electronic Imaging, Burlingame, CA, USA, 15 February 2012; Volume 8298. [Google Scholar] [CrossRef]
- Kuroda, R.; Kawada, S.; Nasuno, S.; Nakazawa, T.; Koda, Y.; Hanzawa, K.; Sugawa, S. A Highly Ultraviolet Light Sensitive and Highly Robust Image Sensor Technology Based on Flattened Si Surface. Ite Trans. Media Technol. Appl. 2014, 2, 123–130. [Google Scholar] [CrossRef]
- Sipauba Carvalho da Silva, Y.R.; Koda, Y.; Nasuno, S.; Kuroda, R.; Sugawa, S. An Ultraviolet Radiation Sensor Using Differential Spectral Response of Silicon Photodiodes. In Proceedings of the IEEE Sensors 2015, Busan, Korea, 1–4 November 2015; pp. 1847–1850. [Google Scholar]
- Janesick, J.R. Photon Transfer DN --> lambda; SPIE Press: Bellingham, WA, USA, 2007. [Google Scholar]
- SOPRA S.A. Company. Optical Data from Sopra SA. Available online: http://www.sspectra.com/sopra.html (accessed on 31 May 2019).
- Wilkinson, F.J.; Farmer, A.J.D.; Geist, J. The near ultraviolet quantum yield of silicon. J. Appl. Phys. 1982, 54. [Google Scholar] [CrossRef]
- Geist, J.; Wang, C.S. New calculations on the quantum yield of silicon in the near ultraviolet. Phys. Rev. B Condens. Matter 1983, 27. [Google Scholar] [CrossRef]
- Canfield, L.R.; Vest, R.E.; Korde, R.; Schmidtke, H.; Desor, R. Absolute silicon photodiodes for 160 nm to 254 nm photons. Metrologia 1998, 35, 329. [Google Scholar] [CrossRef]
- Nikzad, S.; Hoenk, M.E.; Greer, F.; Jones, T.; Jacquot, B.; Monacos, S.; Blacksberg, J.; Hamden, E.; Schiminovich, D.; Martin, C.; et al. Silicon Detector Arrays with Absolute Quantum Efficiency over 50% in the Far Ultraviolet for Single Photon Counting Applications. arXiv 2011, arXiv:1102.2244. [Google Scholar]
- Korde, R.; Geist, J. Quantum efficiency stability of silicon photodiodes. Appl. Opt. 1987, 26, 5284–5290. [Google Scholar] [CrossRef]
- Koda, Y.; Silva, Y.R.S.C.D.; Julien, L.; Sawada, D.; Goto, T.; Kuroda, R.; Sugawa, S. On-Chip Optical Filter Technology with Low Extinction Coefficient SiN for Ultraviolet-Visible-Near Infrared Light Waveband Spectral Imaging. In Proceedings of the Asia-Pacific Workshop on Fundamentals and Applications of Advanced Semiconductor Devices, Hakodate, Japan, 4–6 July 2016; pp. 418–422. [Google Scholar]
Mask Name | Function |
---|---|
PWELL_PDP | Pwell and surface P+ layers |
PDN | Buried N layer |
SURFN | Surface N+ layer |
VPWELL | Electrode for PWELL_PDP |
VPDN | Electrode for PDN |
VSURFN | Electrode for SURFN |
LIGHT | Light irradiation area |
Simulation Condition | PD Type | Simulation Conditions |
---|---|---|
sim1 | PD1 | No surface N+ implant |
sim2 | PD2 | Full surface N+ depletion, 1.7 × 1013 cm−2 |
sim3 | PD2 | Partial surface N+ depletion, 3.4 × 1013 cm−2 |
Sample | Type | PD1 and PD2 Integration | PD2 Condition | SiO2 Thickness |
---|---|---|---|---|
1 | 8 × 6 checker pattern | Monolithically | Full depletion | 150 nm |
2 | Monolithically | Partial depletion | 190 nm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sipauba Carvalho da Silva, Y.R.; Kuroda, R.; Sugawa, S. A Highly Robust Silicon Ultraviolet Selective Radiation Sensor Using Differential Spectral Response Method. Sensors 2019, 19, 2755. https://doi.org/10.3390/s19122755
Sipauba Carvalho da Silva YR, Kuroda R, Sugawa S. A Highly Robust Silicon Ultraviolet Selective Radiation Sensor Using Differential Spectral Response Method. Sensors. 2019; 19(12):2755. https://doi.org/10.3390/s19122755
Chicago/Turabian StyleSipauba Carvalho da Silva, Yhang Ricardo, Rihito Kuroda, and Shigetoshi Sugawa. 2019. "A Highly Robust Silicon Ultraviolet Selective Radiation Sensor Using Differential Spectral Response Method" Sensors 19, no. 12: 2755. https://doi.org/10.3390/s19122755
APA StyleSipauba Carvalho da Silva, Y. R., Kuroda, R., & Sugawa, S. (2019). A Highly Robust Silicon Ultraviolet Selective Radiation Sensor Using Differential Spectral Response Method. Sensors, 19(12), 2755. https://doi.org/10.3390/s19122755