Energy, Carbon and Renewable Energy: Candidate Metrics for Green-Aware Routing?
Abstract
:1. Introduction
2. Motivation
2.1. Related Work
2.2. Sustainability and Green Networking
2.3. Summarizing the Goal
3. Green Routing and Metrics
3.1. Concept of EAR and PAR
3.2. Centralized Sustainable Routing
4. Formalization of the Problem
4.1. Problem Definition
4.2. Modelling of the Objective Functions
4.3. Description of the Heuristic Function
Algorithm 1. Retrieval of data and control plane from chromosome. |
Algorithm 2. Computation of the minimum control plane from given data plane. |
Algorithm 3. The Full Algorithm. |
5. Evaluation of the System
5.1. Experiment Setup
5.2. Result Analysis
5.3. Sustainability Discussion
6. Future Works
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Factor | Values |
---|---|
Time | 10 s, 20 s, 30 s |
Population Size | 20, 40, 80 |
Crossover Percentage | 20%, 40%, 80% |
Mutation-1 Percentage | 20%, 40%, 80% |
Mutation-2 Percentage | 4%, 8%, 12% |
Appendix B
Node No. | Country | CEF | NRE Factor |
---|---|---|---|
0 | Austria | 0.176 | 0.257 |
1 | Belgium | 0.224 | 0.834 |
2 | Poland | 1.196 | 0.863 |
3 | Czech Republic | 0.938 | 0.85 |
4 | German | 0.672 | 0.71 |
5 | Spain | 0.342 | 0.619 |
6 | Switzerland | 0.003 | 0.602 |
7 | Greece | 1.921 | 0.726 |
8 | Croatia | 0.386 | 0.348 |
9 | Hungary | 0.589 | 0.899 |
10 | Ireland | 0.521 | 0.753 |
11 | Israel | 0.74 | 0.975 |
12 | Italy | 0.41 | 0.327 |
13 | Luxembourg | 0.276 | 0.792 |
14 | Netherlands | 0.413 | 0.879 |
15 | United States | 0.547 | 0.72 |
16 | France | 0.07 | 0.825 |
17 | Portugal | 0.4 | 0.465 |
18 | Sweden | 0.023 | 0.429 |
19 | Slovenia | 0.578 | 0.694 |
20 | Slovakia | 0.282 | 0.755 |
21 | United Kingdom | 0.508 | 0.721 |
Algorithm | SPF | GA_E | GA_CO2 | GA_NRE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Country | Energy (Watt) | CO2 (gCO2/kWh) | NRE (Watt) | Energy (Watt) | CO2 (gCO2/kWh) | NRE (Watt) | Energy (Watt) | CO2 (gCO2/kWh) | NRE (Watt) | Energy (Watt) | CO2 (gCO2/kWh) | NRE (Watt) | |
Austria | 10354 | 1822.30 | 2660.97 | 10194 | 1794.14 | 2619.85 | 10102 | 1777.95 | 2596.21 | 10194 | 1794.14 | 2619.85 | |
Belgium | 10160 | 2275.84 | 8473.44 | 10194 | 2283.45 | 8501.79 | 10160 | 2275.84 | 8473.44 | 10194 | 2283.45 | 8501.79 | |
Poland | 10720 | 12821.1 | 9251.36 | 10720 | 12821.1 | 9251.36 | 0 | 0 | 0 | 0 | 0 | 0 | |
Czech Republic | 10428 | 9781.46 | 8863.8 | 10294 | 9655.77 | 8749.9 | 10394 | 9749.57 | 8834.9 | 10394 | 9749.57 | 8834.9 | |
German | 10616 | 7133.95 | 7537.36 | 10480 | 7042.56 | 7440.8 | 10788 | 7249.53 | 7659.48 | 11200 | 7526.4 | 7952 | |
Spain | 10014 | 3424.78 | 6198.66 | 0 | 0 | 0 | 10014 | 3424.78 | 6198.66 | 10014 | 3424.78 | 6198.66 | |
Switzerland | 0 | 0 | 0 | 0 | 0 | 0 | 10354 | 31.062 | 4162.30 | 0 | 0 | 0 | |
Greece | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Croatia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Hungary | 10068 | 5930.05 | 9051.13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Ireland | 10068 | 5245.42 | 7581.20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Israel | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Italy | 10167 | 4168.47 | 6374.70 | 10160 | 4165.6 | 6370.32 | 10167 | 4168.47 | 6374.70 | 10167 | 4168.47 | 6374.70 | |
Luxembourg | 10034 | 2769.38 | 7946.92 | 10034 | 2769.38 | 7946.92 | 10034 | 2769.38 | 7946.92 | 10034 | 2769.38 | 7946.92 | |
Netherlands | 10327 | 4265.05 | 9077.43 | 10320 | 4262.16 | 9071.28 | 0 | 0 | 0 | 10320 | 4262.16 | 9071.28 | |
United States | 10167 | 5561.34 | 8672.45 | 10068 | 5507.19 | 8588.00 | 10068 | 5507.19 | 8588.00 | 10068 | 5507.19 | 8588.00 | |
France | 10068 | 704.76 | 8306.1 | 0 | 0 | 0 | 10388 | 727.16 | 8570.1 | 0 | 0 | 0 | |
Portugal | 10041 | 4016.4 | 4669.06 | 10034 | 4013.6 | 4665.81 | 10014 | 4005.6 | 4656.51 | 10014 | 4005.6 | 4656.51 | |
Sweden | 10428 | 239.844 | 4473.61 | 10394 | 239.062 | 4459.02 | 10394 | 239.062 | 4459.02 | 10394 | 239.062 | 4459.02 | |
Slovenia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Slovakia | 10068 | 2839.17 | 7601.34 | 10034 | 2829.58 | 7575.67 | 10034 | 2829.5 | 7575.67 | 10034 | 2829.5 | 7575.67 | |
United Kingdom | 10116 | 5138.9 | 7293.63 | 10102 | 5131.816 | 7283.542 | 10075 | 5118.1 | 7264.075 | 10075 | 5118.1 | 7264.075 |
References
- Pickavet, M.; Vereecken, W.; Demeyer, S.; Audenaert, P.; Vermeulen, B.; Develder, C.; Demeester, P. Worldwide energy needs for ICT: The rise of power-aware networking. In Proceedings of the 2nd International Symposium on Advanced Networks and Telecommunication Systems, Mumbai, India, 15–17 December 2008. [Google Scholar]
- Digital Agenda: Global Tech Sector Measures Its Carbon Footprint. 2013. Available online: http://europa.eu/rapid/press-release_IP-13-231_en.htm (accessed on 28 June 2019).
- Peter, C.; Andrae, A.S.G. Emerging Trends in Electricity Consumption for Consumer ICT. Available online: https://wireless.kth.se/wp-content/uploads/sites/19/2014/08/Emerging-Trends-in-Electricity-Consumption-for-Consumer-ICT.pdf (accessed on 28 June 2019).
- Zhang, M.; Yi, C.; Liu, B.; Zhang, B. GreenTE: Power-aware traffic engineering. In Proceedings of the 18th IEEE International Conference on Network Protocols (ICNP’10), Kyoto, Japan, 5–8 October 2010; pp. 21–30. [Google Scholar]
- Addis, B.; Capone, A.; Carello, G.; Gianoli, L.G.; Sanso, B. Energy management through optimized routing and device powering for greener communication networks. IEEE/ACM Trans. Netw. 2014, 22, 313–325. [Google Scholar] [CrossRef]
- Gunaratne, C.; Christensen, K.; Suen, S.W. Ethernet Adaptive Link Rate (ALR): Analysis of a buffer threshold policy. In Proceedings of the IEEE Global Communications Conference (GLOBECOM 2006), San Francisco, CA, USA, 27 November–1 December 2006. [Google Scholar]
- Chiaraviglio, L.; Mellia, M.; Neri, F. Reducing Power Consumption in Backbone Networks. In Proceedings of the IEEE International Conference on Communications (ICC 2009), Dresden, Germany, 14–18 June 2009. [Google Scholar]
- Kim, H.; Feamster, N. Improving network management with software defined networking. IEEE Commun. Mag. 2013, 51, 114–119. [Google Scholar] [CrossRef]
- Di Fazio, A.R.; Russo, M.; De Santis, M. Zoning Evaluation for Voltage Optimization in Distribution Networks with Distributed Energy Resources. Energies 2019, 12, 390. [Google Scholar] [CrossRef]
- Fang, C.; Yu, F.R.; Huang, T.; Liu, J.; Liu, Y. A survey of green information-centric networking: Research issues and challenges. IEEE Commun. Surv. Tutor. 2015, 17, 1455–1472. [Google Scholar] [CrossRef]
- Chabarek, J.; Sommers, J.; Barford, P.; Estan, C.; Tsiang, D.; Wright, S. Power awareness in network design and routing. In Proceedings of the 27th Conference on Computer Communications (IEEE INFOCOM 2008), Phoenix, AZ, USA, 13–18 April 2008; pp. 457–465. [Google Scholar]
- Mumey, B.; Tang, J.; Hashimoto, S. Enabling green networking with a power down approach. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 2867–2871. [Google Scholar]
- Markiewicz, A.; Tran, P.N.; Timm-Giel, A. Energy consumption optimization for software defined networks considering dynamic traffic. In Proceedings of the 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet), Luxembourg, 8–10 October 2014; pp. 155–160. [Google Scholar]
- Wang, R.; Jiang, Z.; Gao, S.; Yang, W.; Xia, Y.; Zhu, M. Energy-aware routing algorithms in software-defined networks. In Proceedings of the IEEE 15th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Sydney, Australia, 19 June 2014; pp. 1–6. [Google Scholar]
- Lorincz, J.; Mujaric, E.; Begusic, D. Energy consumption analysis of real metro-optical network. In Proceedings of the 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 550–555. [Google Scholar]
- Lemay, M.; Nguyen, K.K.; Arnaud, B.S.; Cheriet, M. Toward a zero-carbon network: Converging cloud computing and network virtualization. IEEE Internet Comput. 2012, 16, 51–59. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, S. Using Low-Power Modes for Energy Conservation in Ethernet LANs. In Proceedings of the 26th IEEE International Conference on Computer Communications (INFOCOM 2007), Barcelona, Spain, 6–12 May 2007; pp. 2451–2455. [Google Scholar]
- Nedevschi, S.; Popa, L.; Iannaccone, G.; Ratnasamy, S.; Wetherall, D. Reducing Network Energy Consumption via Sleeping and Rate-Adaptation. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation (NDSI2008), San Francisco, CA, USA, 16–18 April 2008. [Google Scholar]
- Avallone, S.; Ventre, G. Energy efficient online routing of flows with additive constraints. Comput. Netw. 2012, 56, 2368–2382. [Google Scholar] [CrossRef]
- Awad, M.K.; Rafique, Y.; Alhadlaq, S.; Hassoun, D.; Alabdulhadi, A.; Thani, S. A greedy power-aware routing algorithm for software-defined networks. In Proceedings of the 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Limassol, Cyprus, 12–14 December 2016; pp. 268–273. [Google Scholar]
- Manjate, J.A.; Hidell, M.; Sjödin, P. Can Energy-Aware Routing Improve the Energy Savings of Energy-Efficient Ethernet? IEEE Trans. Green Commun. Netw. 2018, 2, 787–794. [Google Scholar] [CrossRef]
- Maaloul, R.; Taktak, R.; Chaari, L.; Cousin, B. Energy-Aware Routing in Carrier-Grade Ethernet using SDN Approach. IEEE Trans. Green Commun. Netw. 2018, 2, 844–858. [Google Scholar] [CrossRef]
- Gattulli, M.; Tornatore, M.; Fiandra, R.; Pattavina, A. Low-emissions routing for cloud computing in IP-over-WDM networks with data centers. IEEE J. Sel. Areas Commun. 2014, 32, 28–38. [Google Scholar] [CrossRef]
- Singh, D.; Chandwani, G. Carbon-aware routing in software defined inter data center network. In Proceedings of the 2015 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), Kolkata, India, 15–18 December 2015; pp. 1–6. [Google Scholar]
- Zhou, Z.; Liu, F.; Xu, Y.; Zou, R.; Xu, H.; Lui, J.C.; Jin, H. Carbon-aware load balancing for geo-distributed cloud services. In Proceedings of the 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, San Francisco, CA, USA, 14–16 August 2013; pp. 232–241. [Google Scholar]
- Jo, S.K.; Wang, L.; Kangasharju, J.; Muehlhaeuser, M. Cost-Effective and Eco-Friendly Green Routing Using Renewable Energy. In Proceedings of the 27th International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China, 30 July–2 August 2018; pp. 1–8. [Google Scholar]
- Mineraud, J.; Wang, L.; Balasubramaniam, S.; Kangasharju, J. Hybrid renewable energy routing for ISP networks. In Proceedings of the 35th Annual IEEE International Conference on Computer Communications (IEEE INFOCOM 2016), San Francisco, CA, USA, 10–14 April 2016; pp. 1–9. [Google Scholar]
- Hilty, L.; Lohmann, W.; Huang, E. Sustainability and ICT—An overview of the field. Politeia 2011, 27, 13–28. [Google Scholar]
- Calabrese, A.; Costa, R.; Levialdi, N.; Menichini, T. Integrating sustainability into strategic decision-making: A fuzzy AHP method for the selection of relevant sustainability issues. Technol. Forecast. Soc. Chang. 2019, 139, 155–168. [Google Scholar] [CrossRef]
- Elkington, J. Cannibals with Forks: The Triple Bottom Line of 21st Century Business; Capstone Publishing: Oxford, UK, 1997. [Google Scholar]
- Kajikawa, Y. Research core and framework of sustainability science. Sustain. Sci. 2008, 3, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Hansmann, R.; Mieg, H.A.; Frischknecht, P. Principal sustainability components: Empirical analysis of synergies between the three pillars of sustainability. Int. J. Sustain. Dev. World Ecol. 2012, 19, 451–459. [Google Scholar] [CrossRef]
- Schlömer, S.; Bruckner, T.; Fulton, L.; Hertwich, E.; McKinnon, A.; Perczyk, D.; Roy, J.; Schaeffer, R.; Sims, R.; Smith, P.; et al. Annex III: Technology-specific cost and performance parameters. Clim. Change 2014, 1329–1356. [Google Scholar]
- Hossain, M.M.; Rondeau, E.; Georges, J.P.; Bastogne, T. Modeling the power consumption of ethernet switch. In Proceedings of the International Sustainable ecological engineering design for society conference (SEEDS 2015), Ritz, UK, 17–18 September 2015. [Google Scholar]
- Fithritama, A.; Rondeau, E.; Bombardier, V.; Georges, J.P. Modeling fuzzy rules for managing power consumption of ethernet switch. In Proceedings of the 23rd International Conference on Software, telecommunications and computer networks (SoftCOM), Split, Croatia, 16–18 September 2015; pp. 42–47. [Google Scholar]
- Gupta, M.; Grover, S.; Singh, S. A Feasibility Study for Power Management in LAN Switches. In Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP 2004), Berlin, Germany, 8 October 2004; pp. 361–371. [Google Scholar]
- Krommenacker, N.; Rondeau, E.; Divoux, T. Genetic algorithms for industrial Ethernet network design. In Proceedings of the 4th IEEE International Workshop on Factory Communication Systems, Vasteras, Sweden, 28–30 August 2002; pp. 149–156. [Google Scholar]
- Bui, T.N.; Moon, B.R. Genetic algorithm and graph partitioning. IEEE Trans. Comput. 1996, 45, 841–855. [Google Scholar]
- Ahn, C.W.; Ramakrishna, R.S. A genetic algorithm for shortest path routing problem and the sizing of populations. IEEE Trans. Evol. Comput. 2002, 6, 566–579. [Google Scholar]
- Sndlib-Library of Test Instances for Survivable Fixed Telecommunication Network Design. Available online: http://sndlib.zib.de (accessed on 27 June 2019).
- VNI Global Fixed and Mobile Internet Traffic Forecast. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html (accessed on 27 June 2019).
- White paper on Global IP Traffic Forecast and Methodology, 2006–2011. Available online: http://www.hbtf.org/files/cisco_IPforecast.pdf (accessed on 27 June 2019).
- Van Heddeghem, W.; Idzikowski, F. Equipment power consumption in optical multilayer networks-source data. J. Photonic Netw. Commun. 2012, 24, 1–28. [Google Scholar]
- Brander, M.; Sood, A.; Wylie, C.; Haughton, A.; Lovell, J. Technical Paper - Electricity-specific emission factors for grid electricity. Available online: https://ecometrica.com/assets/Electricity-specific-emission-factors-for-grid-electricity.pdf (accessed on 28 June 2019).
- List of Countries by Electricity Production from Renewable Sources. Available online: https://en.wikipedia.org/wiki/List_of_countries_by_electricity_production_from_renewable_sources (accessed on 27 June 2019).
- Koffi, B.; Cerutti, A.; Duerr, M.; Iancu, A.; Kona, A.; Janssens-Maenhout, G. Covenant of Mayors for Climate and Energy: Default Emission Factors for Local Emission Inventories; European Commission, JRC Technical Report; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
Network | GÉANT |
---|---|
Nodes | 22 |
Links | 36 |
Link type | Full-Duplex |
Demand Structure | (Source, Destination, Throughput) |
Demand Type | Aggregated (one demand request for one source destination couple) |
Bandwidth Capacity | 1 Gbps, 10 Gbps, 40 Gbps, 100 Gbps |
Type | Power in Watts |
---|---|
Static Node | 10000 |
1-Gbps port | 7 |
10-Gbps port | 34 |
40-Gbps port | 160 |
100-gbps port | 360 |
Method | Energy (MWh) | CO2 (Tons) | Non-Renewable Energy (MWh) |
---|---|---|---|
Without any green policy | 2154 | 1088 | 1470 |
SPF | 1522 | 684 | 1074 |
E_GA | 1160 | 548 | 799 |
CO2_GA | 1252 | 436 | 824 |
NRE_GA | 1170 | 470 | 777 |
No. | Paths | NRE% Sum of the Intermediate Nodes | CEF Sum of the Intermediate Nodes |
---|---|---|---|
1 | 5-16-4-14 | 1.535 | 0.742 |
2 | 5-16-1-14 | 1.659 | 0.294 |
3 | 5-12-4-14 | 1.337 | 1.082 |
4 | 5-12-11-14 | 1.602 | 1.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.M.; Georges, J.-P.; Rondeau, E.; Divoux, T. Energy, Carbon and Renewable Energy: Candidate Metrics for Green-Aware Routing? Sensors 2019, 19, 2901. https://doi.org/10.3390/s19132901
Hossain MM, Georges J-P, Rondeau E, Divoux T. Energy, Carbon and Renewable Energy: Candidate Metrics for Green-Aware Routing? Sensors. 2019; 19(13):2901. https://doi.org/10.3390/s19132901
Chicago/Turabian StyleHossain, Md. Mohaimenul, Jean-Philippe Georges, Eric Rondeau, and Thierry Divoux. 2019. "Energy, Carbon and Renewable Energy: Candidate Metrics for Green-Aware Routing?" Sensors 19, no. 13: 2901. https://doi.org/10.3390/s19132901
APA StyleHossain, M. M., Georges, J. -P., Rondeau, E., & Divoux, T. (2019). Energy, Carbon and Renewable Energy: Candidate Metrics for Green-Aware Routing? Sensors, 19(13), 2901. https://doi.org/10.3390/s19132901