Optimized Multi-Spectral Filter Arrays for Spectral Reconstruction
Abstract
:1. Introduction
2. Related Works
2.1. Spectral Reconstruction
2.2. Spectral Filters Selection
2.3. MSFA Pattern Design
2.4. Overall Design
3. Spectral Reconstruction Using Sparse Coding
4. Estimation of Reconstruction Error
5. Heuristic Search for MSFA Design
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hagen, N.; Kudenov, M.W. Review of Snapshot Spectral Imaging Technologies. Opt. Eng. 2013, 52, 090901. [Google Scholar] [CrossRef]
- Silios Technologies: Color Shades. Available online: https://www.silios.com/cms-cameras-1 (accessed on 31 May 2019).
- Li, Y.; Majumder, A.; Zhang, H.; Gopi, M. Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes. Sensors 2018, 18, 1172. [Google Scholar] [CrossRef] [PubMed]
- Monno, Y.; Kitao, T.; Tanaka, M.; Okutomi, M. Optimal Spectral Sensitivity Functions for a Single-Camera One-Shot Multispectral Imaging System. In Proceedings of the 2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 30 September–3 October 2012; pp. 2137–2140. [Google Scholar]
- Miao, L.; Qi, H. The Design and Evaluation of a Generic Method for Generating Mosaicked Multispectral Filter Arrays. IEEE Trans. Image Process. 2006, 15, 2780–2791. [Google Scholar] [CrossRef] [PubMed]
- Yasuma, F.; Mitsunaga, T.; Iso, D.; Nayar, S.K. Generalized Assorted Pixel Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum. Trans. Image Process. 2010, 19, 2241–2253. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.; Yoo, H.; Ben-ezra, M. Multi-spectral imaging by optimized wide band Illumination. Int. J. Comput. Vis. 2010, 56, 140. [Google Scholar] [CrossRef]
- Jia, J.; Barnard, K.; Hirakawa, K. Fourier Spectral Filter Array For Optimal Multispectral Imaging. Trans. Image Process. 2016, 25, 1530–1543. [Google Scholar] [CrossRef] [PubMed]
- Lapray, P.J.; Wang, X.; Thomas, J.B.; Gouton, P. Multispectral Filter Arrays: Recent Advances and Practical Implementation. Sensors 2014, 14, 21626–21659. [Google Scholar] [CrossRef] [Green Version]
- Monno, Y.; Kiku, D.; Kikuchi, S.; Tanaka, M.; Okutomi, M. Multispectral demosaicking with novel guide image generation and residual interpolation. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 645–649. [Google Scholar]
- Liu, Z.; Liu, Q.; ai Gao, G.; Li, C. Optimized spectral reconstruction based on adaptive training set selection. Opt. Express 2017, 25, 12435–12445. [Google Scholar] [CrossRef]
- Liang, J.; Wan, X. Optimized method for spectral reflectance reconstruction from camera responses. Opt. Express 2017, 25, 28273–28287. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Zhao, J.; Yuan, Q. Efficient spectral reconstruction using a trichromatic camera via sample optimization. Vis. Comput. 2018, 34, 1773–1783. [Google Scholar] [CrossRef]
- Sadeghipoor, Z.; Lu, Y.M.; Süsstrunk, S. A novel compressive sensing approach to simultaneously acquire color and near-infrared images on a single sensor. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 1646–1650. [Google Scholar]
- Zhang, J.; Luo, H.; Liang, R.; Ahmed, A.; Zhang, X.; Hui, B.; Chang, Z. Sparse representation-based demosaicing method for microgrid polarimeter imagery. Opt. Lett. 2018, 43, 3265–3268. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, C.; Zhao, J. Locally Linear Embedded Sparse Coding for Spectral Reconstruction From RGB Images. IEEE Signal Process. Lett. 2018, 25, 363–367. [Google Scholar] [CrossRef]
- Aggarwal, H.K.; Majumdar, A. Compressive sensing multi-spectral demosaicing from single sensor architecture. In Proceedings of the 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP), Xi’an, China, 9–13 July 2014; pp. 334–338. [Google Scholar]
- Sadeghipoor, Z.; Thomas, J.B.; Süsstrunk, S. Demultiplexing visible and near-infrared information in single-sensor multispectral imaging. In Proceedings of the 24th Color and Imaging Conference, San Diego, CA, USA, 7–11 November 2016; pp. 76–81. [Google Scholar]
- Imai, F.H.; Berns, R.S. Spectral estimation using trichromatic digital cameras. In Proceedings of the International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives, Chiba, Japan, 21–22 October 1999; pp. 1–8. [Google Scholar]
- Zhang, W.F.; Tang, G.; Dai, D.Q.; Nehorai, A. Estimation of reflectance from camera responses by the regularized local linear model. Opt. Lett. 2011, 36, 3933–3935. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, R.M.; Prasad, D.K.; Brown, M.S. Training-based spectral reconstruction from a single RGB image. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 186–201. [Google Scholar]
- Heikkinen, V.; Cámara, C.; Hirvonen, T.; Penttinen, N. Spectral imaging using consumer-level devices and kernel-based regression. JOSA A 2016, 33, 1095–1110. [Google Scholar] [CrossRef] [PubMed]
- Robles-Kelly, A. Single image spectral reconstruction for multimedia applications. In Proceedings of the 23rd ACM international conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 251–260. [Google Scholar]
- Arad, B.; Ben-Shahar, O. Sparse recovery of hyperspectral signal from natural rgb images. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 19–34. [Google Scholar]
- Fu, Y.; Zheng, Y.; Zhang, L.; Huang, H. Spectral Reflectance Recovery From a Single RGB Image. IEEE Trans. Comput. Imaging 2018, 4, 382–394. [Google Scholar] [CrossRef]
- Jia, Y.; Zheng, Y.; Gu, L.; Subpa-Asa, A.; Lam, A.; Sato, Y.; Sato, I. From RGB to spectrum for natural scenes via manifold-based mapping. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4715–4723. [Google Scholar]
- Xiong, Z.; Shi, Z.; Li, H.; Wang, L.; Liu, D.; Wu, F. Hscnn: Cnn-based hyperspectral image recovery from spectrally undersampled projections. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 518–525. [Google Scholar]
- Aeschbacher, J.; Wu, J.; Timofte, R. In defense of shallow learned spectral reconstruction from rgb images. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 471–479. [Google Scholar]
- Arad, B.; Ben-Shahar, O.; Timofte, R.; Van Gool, L.; Zhang, L.; Yang, M.H. Ntire 2018 challenge on spectral reconstruction from rgb images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake, UT, USA, 18–22 June 2018; pp. 1042–104209. [Google Scholar]
- Zhao, Y.; Guo, H.; Ma, Z.; Cao, X.; Yue, T.; Hu, X. Hyperspectral Imaging With Random Printed Mask. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long beach, CA, USA, 16–20 June 2019; pp. 10149–10157. [Google Scholar]
- Imai, F.H.; Rosen, M.R.; Berns, R.S. Comparison of spectrally narrow-band capture versus wide-band with a priori sample analysis for spectral reflectance estimation. In Color and Imaging Conference, Proceedings of the 8th Color and Imaging Conference, Scottsdale, AZ, USA, 7–10 November 2000; Society for Imaging Science and Technology: Springfield, VA, USA; pp. 234–241.
- Ansari, K.; Thomas, J.B.; Gouton, P. Spectral band Selection Using a Genetic Algorithm Based Wiener Filter Estimation Method for Reconstruction of Munsell Spectral Data. Electron. Imaging 2017, 2017, 190–193. [Google Scholar] [CrossRef]
- Wang, X.; Thomas, J.B.; Hardeberg, J.Y.; Gouton, P. Multispectral imaging: narrow or wide band filters? J. Int. Colour Assoc. 2014, 12, 44–51. [Google Scholar]
- Shen, H.L.; Yao, J.F.; Li, C.; Du, X.; Shao, S.J.; Xin, J.H. Channel Selection for Multispectral Color Imaging using Binary Differential Evolution. Appl. Opt. 2014, 53, 634–642. [Google Scholar] [CrossRef]
- Arad, B.; Ben-Shahar, O. Filter selection for hyperspectral estimation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 21–26. [Google Scholar]
- Fu, Y.; Zhang, T.; Zheng, Y.; Zhang, D.; Huang, H. Joint Camera Spectral Sensitivity Selection and Hyperspectral Image Recovery. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 788–804. [Google Scholar]
- Lukac, R.; Plataniotis, K.N. Color filter arrays: Design and performance analysis. IEEE Trans. Consumer Electron. 2005, 51, 1260–1267. [Google Scholar] [CrossRef]
- Miao, L.; Qi, H.; Ramanath, R.; Snyder, W.E. Binary Tree-based Generic Demosaicking Algorithm for Multispectral Filter Arrays. IEEE Trans. Signal Process 2006, 15, 3550–3558. [Google Scholar]
- Monno, Y.; Kikuchi, S.; Tanaka, M.; Okutomi, M. A practical one-shot multispectral imaging system using a single image sensor. IEEE Trans. Image Process. 2015, 24, 3048–3059. [Google Scholar] [CrossRef] [PubMed]
- Henz, B.; Gastal, E.S.; Oliveira, M.M. Deep Joint Design of Color Filter Arrays and Demosaicing. Comput. Graphics Forum 2018, 37, 389–399. [Google Scholar] [CrossRef]
- Nie, S.; Gu, L.; Zheng, Y.; Lam, A.; Ono, N.; Sato, I. Deeply Learned Filter Response Functions for Hyperspectral Reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–22 June 2018; pp. 4767–4776. [Google Scholar]
- Li, J.; Bai, C.; Lin, Z.; Yu, J. Optimized color filter arrays for sparse representation-based demosaicking. IEEE Trans. Image Process. 2017, 26, 2381–2393. [Google Scholar] [CrossRef] [PubMed]
- Yanagi, Y.; Shinoda, K.; Hasegawa, M.; Kato, S.; Ishikawa, M.; Komagata, H.; Kobayashi, N. Optimal transparent wavelength and arrangement for multispectral filter array. Electron. Imaging 2016, 2016, 1–5. [Google Scholar] [CrossRef]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Rubinstein, R.; Zibulevsky, M.; Elad, M. Efficient Implementation of the K-SVD Algorithm Using Batch Orthogonal Matching Pursuit. Available online: http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2008/CS/CS-2008-08.pdf (accessed on 27 June 2019).
- Obermeier, R.; Martinez-Lorenzo, J.A. Sensing Matrix Design via Mutual Coherence Minimization for Electromagnetic Compressive Imaging Applications. IEEE Trans. Comput. Imaging 2017, 3, 217–229. [Google Scholar] [CrossRef]
- Lu, C.; Li, H.; Lin, Z. Optimized projections for compressed sensing via direct mutual coherence minimization. Signal Process. 2018, 151, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, R.; Matsushita, Y.; Wright, J.; Ben-Ezra, M.; Tai, Y.W.; Ikeuchi, K. High-resolution hyperspectral imaging via matrix factorization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2329–2336. [Google Scholar]
- Chakrabarti, A.; Zickler, T. Statistics of Real-World Hyperspectral Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 193–200. [Google Scholar]
- Jiang, J.; Liu, D.; Gu, J.; Süsstrunk, S. What is the space of spectral sensitivity functions for digital color cameras? In Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision (WACV), Tampa, FL, USA, 15–17 January 2013; pp. 168–179. [Google Scholar]
MSFA | Dataset | ||||||
---|---|---|---|---|---|---|---|
CAVE | Harvard | ICVL | |||||
RMSE | PSNR | RMSE | PSNR | RMSE | PSNR | ||
Noisy (SNR = ∞) | Ours | 0.172 | 21.38 | 0.165 | 22.97 | 0.215 | 19.80 |
Yanagi’s | 0.203 | 20.67 | 0.190 | 21.18 | 0.268 | 18.42 | |
Noisy (SNR ≈ 30 db) | Ours | 0.198 | 20.19 | 0.184 | 21.26 | 0.244 | 19.15 |
Yanagi’s | 0.231 | 19.39 | 0.217 | 19.90 | 0.293 | 17.43 |
MSFA | Dataset | ||||||
---|---|---|---|---|---|---|---|
CAVE | Harvard | ICVL | |||||
RMSE | PSNR | RMSE | PSNR | RMSE | PSNR | ||
Noisy (SNR = ∞) | Ours | 0.258 | 20.21 | 0.212 | 21.97 | 0.071 | 28.59 |
Fu’s | 0.322 | 19.89 | 0.219 | 21.63 | 0.086 | 28.57 | |
Arad | 0.386 | 19.75 | 0.232 | 21.14 | 0.094 | 28.51 | |
Noisy (SNR ≈ 30db) | Ours | 0.281 | 17.86 | 0.246 | 17.97 | 0.095 | 24.26 |
Fu’s | 0.328 | 16.36 | 0.257 | 16.77 | 0.109 | 22.33 | |
Arad | 0.440 | 15.32 | 0.288 | 16.03 | 0.156 | 20.98 |
MSFA | Dataset | ||||||
---|---|---|---|---|---|---|---|
CAVE | Harvard | ICVL | |||||
RMSE | PSNR | RMSE | PSNR | RMSE | PSNR | ||
Noisy (SNR = ∞) | Ours | 0.148 | 24.46 | 0.091 | 29.96 | 0.054 | 31.12 |
Nie’s | 0.166 | 23.76 | 0.114 | 27.07 | 0.068 | 29.87 | |
Arad | 0.161 | 23.54 | 0.119 | 26.49 | 0.069 | 29.89 | |
Noisy (SNR = 30 db) | Ours | 0.163 | 23.08 | 0.097 | 27.23 | 0.059 | 30.02 |
Nie’s | 0.172 | 22.59 | 0.118 | 25.72 | 0.072 | 27.93 | |
Arad | 0.186 | 22.47 | 0.122 | 25.06 | 0.072 | 28.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Li, Y.; Xie, X.; Lin, Z. Optimized Multi-Spectral Filter Arrays for Spectral Reconstruction. Sensors 2019, 19, 2905. https://doi.org/10.3390/s19132905
Wu R, Li Y, Xie X, Lin Z. Optimized Multi-Spectral Filter Arrays for Spectral Reconstruction. Sensors. 2019; 19(13):2905. https://doi.org/10.3390/s19132905
Chicago/Turabian StyleWu, Renjie, Yuqi Li, Xijiong Xie, and Zhijie Lin. 2019. "Optimized Multi-Spectral Filter Arrays for Spectral Reconstruction" Sensors 19, no. 13: 2905. https://doi.org/10.3390/s19132905
APA StyleWu, R., Li, Y., Xie, X., & Lin, Z. (2019). Optimized Multi-Spectral Filter Arrays for Spectral Reconstruction. Sensors, 19(13), 2905. https://doi.org/10.3390/s19132905