Adaptive Motion Artifact Reduction Based on Empirical Wavelet Transform and Wavelet Thresholding for the Non-Contact ECG Monitoring Systems
Abstract
:1. Introduction
2. Proposed Method
2.1. Databases
2.1.1. Simulated ECG Data
2.1.2. Real ECG Data
2.2. Theory of Empirical Wavelet Transform
- 1)
- Compute the Fast Fourier Transform (FFT) of the signal to obtain the spectrum . Detect the local maxima in the spectrum and select the top values in descending order as .
- 2)
- Perform the Fourier spectrum segmentation. We assume that the Fourier support is segmented into contiguous segments, and maintain the first N−1 local maxima (excluding 0 and π). Centered around each , we define a transition phase of width . The boundary of each segment is defined as the center of two consecutive local maxima values:The spectrum boundary is: ;
- 3)
- Based on the detected spectral boundaries, we choose the Meyer wavelet as the basis function. The adaptive wavelet filter bank which consists of a low-pass filter (scaling function) and a band-pass filter (wavelet function) is designed by using Equations (2) and (3), respectively.Correctly select the parameter to ensure that EWT is a tight frame. is defined as follows [22]:Define EWT after exporting the scaling function and the empirical wavelet. The approximation coefficients, , is the inner product of the signal and the scaling function:The detail coefficients, which are given by the inner product of the signal and the empirical wavelet, are presented below:The empirical mode of signal decomposition is as follows:
- 4)
- The extracted pattern is defined as the output of the scaling function and the wavelet function.
2.3. The Proposed Method
3. Results
4. Discussion
4.1. Qualitative Analysis
4.2. Quantitative Analysis
4.3. Real ECG Signals Testing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.S.; Heo, J.; Lee, W.K.; Lim, Y.G.; Kim, Y.H.; Park, K.S. Flexible capacitive electrodes for minimizing motion artifacts in ambulatory electrocardiograms. Sensors 2014, 14, 14732–14743. [Google Scholar] [CrossRef] [PubMed]
- De Bacquer, D.; De Backer, G.; Kornitzer, M.; Blackburn, H. Prognostic value of ECG findings for total, cardiovascular disease, and coronary heart disease death in men and women. Heart 1998, 80, 570–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torfs, T.; Chen, Y.H.; Kim, H.; Yazicioglu, R.F. Noncontact ECG recording system with real time capacitance measurement for motion artifact reduction. IEEE Trans. Biomed. Circuits. Syst. 2014, 8, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Jiang, Q.Y.; Chen, C.Y.; Xu, M. Application of heart rate variability analysis to pain detection for newborns. Acta Phys. Sin. 2014, 63, 208704. [Google Scholar]
- Xu, L.; Rooijakkers, M.J.; Rabotti, C.; Peuscher, J.; Mischi, M. Use of power-line interference for adaptive motion artifact removal in biopotential measurements. Physiol. Meas. 2016, 37, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H. Motion Artifact Reduction in Electrocardiogram Using Adaptive Filter. J. Med. Biol. Eng. 2011, 31, 67–72. [Google Scholar] [CrossRef]
- Daqrouq, K.; Ajour, M.; Al-Qawasmi, A.R.; Alkhateeb, A. The discrete wavelet transform based electrocardiographic baseline wander reduction method for better signal diagnosis. J. Med. Imag. Health Inf. 2018, 8, 1590–1597. [Google Scholar] [CrossRef]
- Lin, H.Y.; Liang, S.Y.; Ho, Y.L.; Lin, Y.H.; Ma, H.P. Discrete-wavelet-transform-based noise removal and feature extraction for ECG signals. Irbm 2014, 35, 351–361. [Google Scholar] [CrossRef]
- Lee, J.; McManus, D.D.; Merchant, S.; Chon, K.H. Automatic motion and noise artifact detection in Holter ECG data using empirical mode decomposition and statistical approaches. IEEE Trans. Biomed. Eng. 2012, 59, 1499–1506. [Google Scholar]
- Blanco-Velasco, M.; Weng, B.; Barner, K.E. ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 2008, 38, 1–13. [Google Scholar] [CrossRef]
- Thakor, N.V.; Zhu, Y.S. Applications of adaptive filtering to ECG analysis: Noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 1991, 38, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Tan, G.Z.; Liu, Z.T.; Wu, H. Chaotic time series prediction based on brain emotional learning model and self-adaptive genetic algorithm. Acta Phys. Sin. 2018, 67, 080502. [Google Scholar]
- Lin, Y.D.; Hu, Y.H. Power-line interference detection and suppression in ECG signal processing. IEEE Trans. Biomed. Eng. 2008, 55, 354–357. [Google Scholar] [CrossRef]
- Miaolei, H.E.; He, J. A real-time H-infinity cubature Kalman filter based on SVD and its application to a small unmanned helicopter. Optik 2017, 140, 96–103. [Google Scholar]
- Yang, X.; Xu, D.; Zhang, H. Crank–Nicolson/quasi-wavelets method for solving fourth order partial integro-differential equation with a weakly singular kernel. J. Comput. Phys. 2013, 234, 317–329. [Google Scholar] [CrossRef]
- Feng, D.S.; Yang, D.X.; Wang, X. Ground penetrating radar numerical simulation with interpolating wavelet scales method and research on fourth-order Runge-Kutta auxiliary differential equation perfectly matched layer. Acta Phys. Sin. 2016, 65, 23. [Google Scholar]
- Hashim, F.R.; Adnan, J.; Daud, N.G.N.; Mokhtar, A.S.N.; Rashidi, A.F.; Rizman, Z.I. Electrocardiogram noise cancellation using wavelet transform. J. Fundam. Appl. Sci. 2017, 9, 131–140. [Google Scholar] [CrossRef]
- He, S.; Sun, K.; Wang, R. Fractional fuzzy entropy algorithm and the complexity analysis for nonlinear time series. Eur. Phys. J.-Spec. Top. 2018, 227, 943–957. [Google Scholar] [CrossRef]
- Nagai, S.; Anzai, D.; Wang, J. Motion artefact removals for wearable ECG using stationary wavelet transform. Healthc. Technol. Lett. 2017, 4, 138–141. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Sun, Z.; Gong, H. Energy of intrinsic mode function for gas-liquid flow pattern identification. Metrol. Meas. Syst. 2012, 19, 759–766. [Google Scholar] [CrossRef]
- Gilles, J. Empirical Wavelet Transform. IEEE Trans. Signal Process 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Song, Y.H.; Zeng, S.K.; Ma, J.M.; Guo, J.B. A fault diagnosis method for roller bearing based on empirical wavelet transform decomposition with adaptive empirical mode segmentation. Measurement 2018, 117, 266–276. [Google Scholar] [CrossRef]
- Cao, H.R.; Fan, F.; Zhou, K.; He, Z.J. Wheel-bearing fault diagnosis of trains using empirical wavelet transform. Measurement 2016, 82, 439–449. [Google Scholar] [CrossRef]
- Li, Y.F.; Wu, H.P.; Liu, H. Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction. Energ. Convers. Manag. 2018, 167, 203–219. [Google Scholar] [CrossRef]
- Liu, H.; Wu, H.P.; Li, Y.F. Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction. Energy Convers. Manag. 2018, 161, 266–283. [Google Scholar] [CrossRef]
- Maheshwari, S.; Pachori, R.B.; Acharya, U.R. Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE J. Biomed. Health Inf. 2017, 21, 803–813. [Google Scholar] [CrossRef]
- Huang, N.; Qi, J.; Li, F.; Yang, D.; Cai, G.; Huang, G.; Zheng, J.; Li, Z. Short-circuit fault detection and classification using empirical wavelet transform and local energy for electric transmission line. Sensors 2017, 17, 2133. [Google Scholar] [CrossRef]
- Singh, O.; Sunkaria, R.K. ECG signal denoising via empirical wavelet transform. Australas Phys. Eng. Sci. Med. 2017, 40, 219–229. [Google Scholar] [CrossRef]
- Luo, J.; Xu, X.; Ding, Y.; Yuan, Y.; Yang, B.; Sun, K.; Yin, L. Application of a memristor-based oscillator to weak signal detection. Eur. Phys. J. Plus 2018, 133, 239. [Google Scholar] [CrossRef]
- Li, Q.Q.; Xu, X.M.; Yin, L.Z.; Ding, Y.P.; Ding, J.F.; Sun, K.H. Implication of two-coupled tri-stable stochastic resonance in weak signal detection. Chin. Phys. B 2018, 27, 034203. [Google Scholar] [CrossRef]
- Peng, H.H.; Xu, X.M.; Yang, B.C.; Yin, L.Z. Implication of two-coupled differential van der pol duffing oscillator in weak signal detection. J. Phys. Soc. Jpn. 2016, 85, 044005. [Google Scholar] [CrossRef]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Berkaya, S.K.; Uysal, A.K.; Gunal, E.S.; Ergin, S.; Gunal, S.; Gulmezoglu, M.B. A survey on ECG analysis. Biomed. Signal. Process. 2018, 43, 216–235. [Google Scholar] [CrossRef]
- Qin, T.; Huang, S.X.; Liao, C.W.; Yu, T.B.; Luo, H.; Liu, S.; Deng, L.W. Floating gate effect in amorphous InGaZnO thin-film transistor. Acta Phys. Sin. 2018, 67, 047302. [Google Scholar]
- Kong, L.A.; Sun, J.; Qian, C.; Fu, Y.; Wang, J.; Yang, J.; Gao, Y. Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors. Org. Electr. 2017, 47, 126–132. [Google Scholar] [CrossRef]
- Zheng, Y.; Duan, J.A. Transmission characteristics of planar optical waveguide devices on coupling interface. Optik 2013, 124, 5274–5279. [Google Scholar] [CrossRef]
- Yin, C.; Zhou, H.; Li, J. Facile one-step hydrothermal synthesis of PEDOT: PSS/MnO2 nanorod hybrids for high-rate supercapacitor electrode materials. Ionics 2019, 25, 685–695. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, H.; Zeng, J.; Zhou, J.; Li, H.; Xia, H. Facile synthesis of nitrogen-doped microporous carbon spheres for high performance symmetric supercapacitors. Nanoscale Res. Lett. 2018, 13, 314. [Google Scholar] [CrossRef]
- Zou, C.; Qin, Y.J.; Sun, C.L.; Li, W. Motion artifact removal based on periodical property for ECG monitoring with wearable systems. Pervasive Mob. Comput. 2017, 40, 267–278. [Google Scholar] [CrossRef]
Record | DWT | EMD | EWT | EWT-WT |
---|---|---|---|---|
102 | 0.0050 | 0.0103 | 0.0017 | 0.0014 |
103 | 0.0077 | 0.0100 | 0.0019 | 0.0011 |
104 | 0.0041 | 0.0071 | 0.0013 | 0.0010 |
109 | 0.0085 | 0.0060 | 0.0036 | 0.0028 |
123 | 0.0018 | 0.0037 | 0.0011 | 0.0011 |
201 | 0.0135 | 0.0133 | 0.0025 | 0.0019 |
208 | 0.0146 | 0.0166 | 0.0045 | 0.0035 |
209 | 0.0029 | 0.0039 | 0.0014 | 0.0009 |
213 | 0.0041 | 0.0080 | 0.0030 | 0.0016 |
219 | 0.0124 | 0.0168 | 0.0024 | 0.0026 |
average | 0.0075 | 0.0096 | 0.0023 | 0.0018 |
Record | DWT | EMD | EWT | EWT-WT |
---|---|---|---|---|
102 | 68.06 | 97.89 | 39.80 | 35.65 |
103 | 70.59 | 80.53 | 34.85 | 27.11 |
104 | 66.68 | 87.57 | 37.78 | 33.25 |
109 | 54.24 | 45.72 | 35.10 | 31.16 |
123 | 48.09 | 69.47 | 37.25 | 38.58 |
201 | 85.67 | 85.06 | 37.23 | 32.52 |
208 | 73.65 | 78.49 | 40.81 | 35.91 |
209 | 55.82 | 65.02 | 39.01 | 30.89 |
213 | 41.56 | 58.12 | 35.76 | 26.23 |
219 | 80.69 | 93.98 | 35.91 | 36.87 |
average | 64.51 | 76.19 | 37.35 | 32.82 |
Record | DWT | EMD | EWT | EWT-WT |
---|---|---|---|---|
102 | 3.34 | 0.18 | 8.00 | 8.96 |
103 | 3.02 | 1.88 | 9.15 | 11.34 |
104 | 3.52 | 1.15 | 8.45 | 9.56 |
109 | 5.31 | 6.80 | 9.09 | 10.13 |
123 | 6.36 | 3.16 | 8.58 | 8.27 |
201 | 1.34 | 1.40 | 8.58 | 9.76 |
208 | 2.66 | 2.10 | 7.78 | 8.89 |
209 | 5.06 | 3.74 | 8.18 | 10.2 |
213 | 7.63 | 4.71 | 8.93 | 11.62 |
219 | 1.86 | 0.54 | 8.90 | 8.67 |
average | 4.01 | 2.57 | 8.56 | 9.74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Liang, Y.; He, P.; Yang, J. Adaptive Motion Artifact Reduction Based on Empirical Wavelet Transform and Wavelet Thresholding for the Non-Contact ECG Monitoring Systems. Sensors 2019, 19, 2916. https://doi.org/10.3390/s19132916
Xu X, Liang Y, He P, Yang J. Adaptive Motion Artifact Reduction Based on Empirical Wavelet Transform and Wavelet Thresholding for the Non-Contact ECG Monitoring Systems. Sensors. 2019; 19(13):2916. https://doi.org/10.3390/s19132916
Chicago/Turabian StyleXu, Xiaowen, Ying Liang, Pei He, and Junliang Yang. 2019. "Adaptive Motion Artifact Reduction Based on Empirical Wavelet Transform and Wavelet Thresholding for the Non-Contact ECG Monitoring Systems" Sensors 19, no. 13: 2916. https://doi.org/10.3390/s19132916
APA StyleXu, X., Liang, Y., He, P., & Yang, J. (2019). Adaptive Motion Artifact Reduction Based on Empirical Wavelet Transform and Wavelet Thresholding for the Non-Contact ECG Monitoring Systems. Sensors, 19(13), 2916. https://doi.org/10.3390/s19132916