Unobtrusive Estimation of Cardiovascular Parameters with Limb Ballistocardiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Signal Pre-Conditioning
2.3. Analysis of Weighing Scale Ballistocardiogram (BCG) for Cardiovascular (CV) Parameter Estimation
2.3.1. Feature Extraction
2.3.2. Data Analysis
2.4. Analysis of Armband BCG for CV Parameter Estimation
2.4.1. Transformation of Armband BCG to Weighing Scale BCG
2.4.2. Feature Extraction and Data Analysis
3. Results
3.1. Experimental Data
3.2. CV Parameter Estimation with Weighing Scale BCG
3.3. CV Parameter Estimation with Armband BCG
4. Discussion
4.1. Potential of Scale and Armband BCG in CV Parameter Estimation
4.2. Physiological Relevance of Weighing Scale BCG Features
4.3. Physiological Relevance of Armband BCG Features
4.4. Summarizing Remarks and Study Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, C.-S.; Carek, A.M.; Inan, O.T.; Mukkamala, R.; Hahn, J.-O. Ballistocardiogram-Based Approach to Cuffless Blood Pressure Monitoring: Proof of Concept and Potential Challenges. IEEE Trans. Biomed. Eng. 2018, 65, 2384–2391. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.L.; Carek, A.M.; Kim, C.; Ashouri, H.; Inan, O.T.; Hahn, J.-O.; Mukkamala, R. Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time. Sci. Rep. 2016, 6, 39273. [Google Scholar] [CrossRef] [PubMed]
- Ashouri, H.; Orlandic, L.; Inan, O.T. Unobtrusive Estimation of Cardiac Contractility and Stroke Volume Changes using Ballistocardiogram Measurements on a High Bandwidth Force Plate. Sensors 2016, 16, 787. [Google Scholar] [CrossRef] [PubMed]
- Inan, O.T.; Etemadi, M.; Wiard, R.M.; Giovangrandi, L.; Kovacs, G.T.A. Robust Ballistocardiogram Acquisition for Home Monitoring. Physiol. Meas. 2009, 30, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Inan, O.T.; Park, D.; Member, S.; Giovangrandi, L.; Kovacs, G.T.A. Noninvasive Measurement of Physiological Signals on a Modified Home Bathroom Scale. IEEE Trans. Biomed. Eng. 2012, 59, 2137–2143. [Google Scholar] [CrossRef]
- Shin, J.H.; Lee, K.M.; Park, K.S. Non-Constrained Monitoring of Systolic Blood Pressure on a Weighing Scale. Physiol. Meas. 2009, 30, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Campo, D.; Khettab, H.; Yu, R.; Genain, N.; Edouard, P.; Buard, N.; Boutouyrie, P. Measurement of Aortic Pulse Wave Velocity With a Connected Bathroom Scale. Am. J. Hypertens. 2017, 30, 876–883. [Google Scholar] [CrossRef]
- Jung, D.W.; Hwang, S.H.; Yoon, H.N.; Lee, Y.G.; Jeong, D.; Park, K.S. Nocturnal Awakening and Sleep Efficiency Estimation Using Unobtrusively Measured Ballistocardiogram. IEEE Trans. Biomed. Eng. 2014, 61, 131–138. [Google Scholar] [CrossRef]
- Shin, J.H.; Chee, Y.J.; Jeong, D.; Park, K.S. Nonconstrained Sleep Monitoring System and Algorithms Using Air-Mattress With Balancing Tube Method. IEEE J. Biomed. Heal. Inform. 2010, 14, 147–156. [Google Scholar]
- Pinheiro, E.; Postolache, O.; Girão, P. Non-Intrusive Device for Real-Time Circulatory System Assessment with Advanced Signal Processing Capabilities. Meas. Sci. Rev. 2010, 10, 166–175. [Google Scholar] [CrossRef]
- Akhbardeh, A.; Junnila, S.; Koivistoinen, T.; Varri, A. An intelligent Ballistocardiographic Chair using a Novel SF-ART Neural Network and Biorthogonal Wavelets. J. Med. Syst. 2007, 31, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Alametsä, J.; Palomäki, A.; Viik, J. Short and Longer Term Repeatability of Ballistocardiography in a Sitting Position with EMFi Sensor. Med. Biol. Eng. Comput. 2011, 49, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Da He, D.; Winokur, E.S.; Sodini, C.G. An Ear-Worn Vital Signs Monitor. IEEE Trans. Biomed. Eng. 2015, 62, 2547–2552. [Google Scholar] [CrossRef] [PubMed]
- Yousefian, P.; Shin, S.; Mousavi, A.; Kim, C.S.; Mukkamala, R.; Jang, D.G.; Ko, B.H.; Lee, J.; Kwon, U.K.; Kim, Y.H.; et al. Data Mining Investigation of the Association between a Limb Ballistocardiogram and Blood Pressure. Physiol. Meas. 2018, 39, 075009. [Google Scholar] [CrossRef]
- Wiens, A.D.; Etemadi, M.; Roy, S.; Klein, L.; Inan, O.T. Toward Continuous, Noninvasive Assessment of Ventricular Function and Hemodynamics: Wearable Ballistocardiography. IEEE J. Biomed. Heal. Inform. 2015, 19, 1435–1442. [Google Scholar] [CrossRef]
- Kim, C.-S.; Ober, S.L.; McMurtry, M.S.; Finegan, B.A.; Inan, O.T.; Mukkamala, R.; Hahn, J.-O. Ballistocardiogram: Mechanism and Potential for Unobtrusive Cardiovascular Health Monitoring. Sci. Rep. 2016, 6, 31297. [Google Scholar] [CrossRef] [Green Version]
- Mueller, R.L.; Sanborn, T.A. The History of Interventional Cardiology: Cardiac Catheterization, Angioplasty, and Related Interventions. Am. Heart J. 1995, 129, 146–172. [Google Scholar] [CrossRef]
- Wesseling, K.H.; De Wit, B.; van der Hoeven, G.M.A.; van Goudoever, J.; Settels, J.J. Physiocal, Calibrating Finger Vascular Physiology for Finapres. Homeostasis 1995, 36, 67–82. [Google Scholar]
- Imholz, B.P.; Wieling, W.; van Montfrans, G.A.; Wesseling, K.H. Fifteen Years Experience with Finger Arterial Pressure Monitoring: Assessment of the Technology. Cardiovasc. Res. 1998, 38, 605–616. [Google Scholar] [CrossRef]
- Eckerle, J.S. Tonometry, Arterial. In Encyclopedia of Medical Devices and Instrumentation; Webster, J.G., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 402–410. [Google Scholar]
- Hamilton, W.F.; Riley, R.L.; Attyah, A.M.; Cournand, A.; Fowell, D.M.; Himmelstein, A.; Noble, R.P.; Remington, J.W.; Richards, D.W., Jr.; Wheeler, N.C.; et al. Comparison of the Fick and Dye-Injection Methods of Measuring the Cardiac Output in Man. Am. J. Physiol. 2016, 153, 309–321. [Google Scholar] [CrossRef]
- Schiller, N.B.; Acquatella, H.; Ports, T.A.; Drew, D.; Goerke, J.O.N.; Ringertz, H.; Silverman, N.H.; Brundage, B.; Botvinick, E.H.; Boswell, R.; et al. Left Ventricular Volume from Paired Biplane Two-Dimensional Echocardiography. Circulation 1979, 60, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.P.; Lemmens, H.J.M. Stroke Volume Equation for Impedance Cardiography. Med. Biol. Eng. Comput. 2005, 43, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Braun, F.; Proenc, M.; Adler, A.; Riedel, T.; Thiran, P.; Solà, J. Accuracy and Reliability of Noninvasive Stroke Volume Monitoring via ECG-Gated 3D Electrical Impedance Tomography in Healthy Volunteers. PLoS ONE 2018, 13, e0191870. [Google Scholar] [CrossRef] [PubMed]
- Reisner, A.T.; Xu, D.; Ryan, K.L.; Convertino, V.A.; Rickards, C.A.; Mukkamala, R. Monitoring Non-Invasive Cardiac Output and Stroke Volume during Experimental Human Hypovolaemia and Resuscitation. Br. J. Anaesth. 2011, 106, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Truijen, J.; Van Lieshout, J.J.; Wesselink, W.A.; Westerhof, B.E. Noninvasive Continuous Hemodynamic Monitoring. J. Clin. Monit. Comput. 2012, 26, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Bogert, L.W.J.; Lieshout, J.J. Van Non-Invasive Pulsatile Arterial Pressure and Stroke Volume Changes from the Human Finger. Exp. Physiol. 2005, 90, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Su, C.-H.; Liu, S.-H.; Tan, T.-H.; Lo, C.-H. Using the Pulse Contour Method to Measure the Changes in Stroke Volume during a Passive Leg Raising Test. Sensors 2018, 18, 3420. [Google Scholar] [CrossRef]
- Fazeli, N.; Hahn, J.O. Estimation of Cardiac Output and Peripheral Resistance Using Square-Wave-Approximated Aortic Flow Signal. Front. Physiol. 2012, 3, 298. [Google Scholar] [CrossRef] [PubMed]
- Conn, N.J.; Schwarz, K.Q.; Borkholder, D.A. In-Home Cardiovascular Monitoring System for Heart Failure: Comparative Study. JMIR MHealth UHealth 2019, 7, e12419. [Google Scholar] [CrossRef]
- Kim, C.-S.; Carek, A.M.; Mukkamala, R.; Inan, O.T.; Hahn, J.-O. Ballistocardiogram as Proximal Timing Reference for Pulse Transit Time Measurement: Potential for Cuffless Blood Pressure Monitoring. IEEE Trans. Biomed. Eng. 2015, 62, 2657–2664. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.J.; Roh, J.; Cho, D.; Hyeong, J.; Kim, S. A Chair-Based Unconstrained/Nonintrusive Cuffless Blood Pressure Monitoring System Using a Two-Channel Ballistocardiogram. Sensors 2019, 19, 595. [Google Scholar] [CrossRef] [PubMed]
- Javaid, A.Q.; Ashouri, H.; Tridandapani, S.; Inan, O.T. Elucidating the Hemodynamic Origin of Ballistocardiographic Forces: Toward Improved Monitoring of Cardiovascular Health at Home. IEEE J. Transl. Eng. Heal. Med. 2016, 4, 1900208. [Google Scholar] [CrossRef] [PubMed]
- Martín-Yebra, A.; Landreani, F.; Casellato, C.; Pavan, E.; Migeotte, P.-F.; Frigo, C.; Martínez, J.P.; Caiani, E.G. Evaluation of Respiratory- and Postural-Induced Changes on the Ballistocardiogram Signal by Time Warping Averaging. Physiol. Meas. 2017, 38, 1426–1440. [Google Scholar] [CrossRef] [PubMed]
- Scarborough, W.R.; Folk III, E.F.; Smith, P.M.; Condon, J.H. The Nature of Records from Ultra-Low Frequency Ballistocardiographic Systems and Their Relation to Circulatory Events. Am. J. Cardiol. 1958, 2, 613–641. [Google Scholar] [CrossRef]
- Rappaport, M.B. Displacement, Velocity, and Acceleration Ballistocardiograms as Registered with an Undamped Bed of Ultralow Natural Frequency: II. Instrumental Considerations. Am. Heart J. 1956, 52, 643–652. [Google Scholar] [CrossRef]
- Starr, I.; Horwitz, O.; Mayock, R.L.; Krumbhaar, E.B. Standardization of the Ballistocardiogram by Simulation of the Heart’s Function at Necropsy; With a Clinical Method for the Estimation of Cardiac Strength and Normal Standards for It. Circulation 1950, I, 1073–1096. [Google Scholar] [CrossRef]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting Outliers: Do Not Use Standard Deviation around the Mean, Use Absolute Deviation around the Median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef]
- Gaddum, N.R.; Alastruey, J.; Beerbaum, P.; Chowienczyk, P.; Schaeffter, T. A Technical Assessment of Pulse Wave Velocity Algorithms Applied to Non-Invasive Arterial Waveforms. Ann. Biomed. Eng. 2013, 41, 2617–2629. [Google Scholar] [CrossRef]
- Lee, S.; Chang, J.H. Oscillometric Blood Pressure Estimation Based on Deep Learning. IEEE Trans. Ind. Inform. 2017, 13, 461–472. [Google Scholar] [CrossRef]
- Lee, S.; Chang, J. Deep Boltzmann Regression With Mimic Features for Oscillometric Blood Pressure Estimation. IEEE Sens. J. 2017, 17, 5982–5993. [Google Scholar] [CrossRef]
- Yousefian, P.; Shin, S.; Mousavi, A.S.; Kim, C.-S.; Finegan, B.; McMurtry, M.S.; Mukkamala, R.; Jang, D.-G.; Kwon, U.; Kim, Y.H.; et al. Physiological Association between Limb Ballistocardiogram and Arterial Blood Pressure Waveforms: A Mathematical Model-Based Analysis. Sci. Rep. 2019, 9, 5146. [Google Scholar] [CrossRef] [PubMed]
- Helman, A. The Finest Peaks-Prominence and Other Mountain Measures; Trafford Publishing: Victoria, BC, Canada, 2005; ISBN 1-4120-5995-x. [Google Scholar]
- Griffié, J.; Boelen, L.; Burn, G.; Cope, A.P.; Owen, D.M. Topographic Prominence as a Method for Cluster Identification in Single-Molecule Localisation Data. J. Biophotonics 2015, 8, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.T.; Obrist, P.A.; Sherwood, A.; Crowell, M.D. Evaluation of Myocardial and Peripheral Vascular Responses during Reaction Time, Mental Arithmetic, and Cold Pressor Tasks. Psychophysiology 1987, 24, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Turankar, A.V.; Jain, S.; Patel, S.B.; Sinha, S.R.; Joshi, A.D.; Vallish, B.N.; Mane, P.R.; Turankar, S.A. Effects of Slow Breathing Exercise on Cardiovascular Functions, Pulmonary Functions & Galvanic Skin Resistance in Healthy Human Volunteers—A Pilot Study. Indian J. Med. Res. 2013, 137, 916–921. [Google Scholar] [PubMed]
- Adhana, R.; Agarwal, M.; Gupta, R.; Dvivedi, J. Effect of Slow Breathing Training on Heart Rate, Spontaneous Respiratory Rate and Pattern of Breathing. Int. J. Res. Med. Sci. 2016, 4, 1027–1030. [Google Scholar] [CrossRef]
- Grunovas, A.; Trinkunas, E.; Buliuolis, A.; Venskaityte, E.; Poderys, J.; Poderiene, K. Cardiovascular Response to Breath-Holding Explained by Changes of the Indices and their Dynamic Interactions. Biol. Syst. Open Access 2016, 5, 152. [Google Scholar] [CrossRef]
- Mukkamala, R.; Hahn, J.; Inan, O.T.; Mestha, L.K.; Kim, C.; Hakan, T. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans. Biomed. Eng. 2015, 62, 1879–1901. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Zhang, Y.; Liu, J.; Dai, W.; Tsang, H.K. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio. IEEE Trans. Biomed. Eng. 2016, 63, 964–972. [Google Scholar] [CrossRef]
- Seo, J.; Pietrangelo, S.J.; Lee, H.-S.; Sodini, C.G. Noninvasive Arterial Blood Pressure Waveform Monitoring Using Two-Element Ultrasound System. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 776–784. [Google Scholar] [CrossRef]
- Beulen, B.W.; Bijnens, N.; Koutsouridis, G.G.; Brands, P.J.; Rutten, M.C.; van de Vosse, F.N. Toward Noninvasive Blood Pressure Assessment in Arteries by Using Ultrasound. Ultrasound Med. Biol. 2011, 37, 788–797. [Google Scholar] [CrossRef]
- Vappou, J.; Luo, J.; Okajima, K.; Di Tullio, M.; Konofagou, E.E. Non-Invasive Measurement of Local Pulse Pressure by Pulse Wave-Based Ultrasound Manometry (PWUM). Physiol. Meas. 2011, 32, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Miao, F.; Fu, N.; Zhang, Y.T.; Ding, X.R.; Hong, X.; He, Q.; Li, Y. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques. IEEE J. Biomed. Heal. Inform. 2017, 21, 1730–1740. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.M.; Yoo, T.; Kim, H.C. A wrist-worn integrated health monitoring instrument with a tele-reporting device for telemedicine and telecare. IEEE Trans. Instrum. Meas. 2006, 55, 1655–1661. [Google Scholar] [CrossRef]
- Theorell, T.; Edhag, O.; Fagrell, B. Non-Invasive Methods for Evaluating the Importance of Heart Rate and Atrial Activity in Cardiac Pacing. Acta Med. Scand. 1978, 203, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Theorell, T.; Rahe, R.H. Life Change Events, Ballistocardiography and Coronary Death. J. Human Stress 1975, 1, 18–24. [Google Scholar] [CrossRef] [PubMed]
Symbol | Definition |
---|---|
PTTI | Time interval between BCG I wave and PPG foot |
PTTJ | Time interval between BCG J wave and PPG foot |
PTTK | Time interval between BCG K wave and PPG foot |
TIJ | Time interval between BCG I wave and J wave |
TJK | Time interval between BCG J wave and K wave |
TIK | Time interval between BCG I wave and K wave |
TJJ | Time interval between J waves of two consecutive BCG beats |
AI | Amplitude of BCG I wave |
AJ | Amplitude of BCG J wave |
AK | Amplitude of BCG K wave |
AIJ | Amplitude difference between I wave and J wave |
AJK | Amplitude difference between J wave and K wave |
AIJ·PTTI2 | Surrogate of SV* |
AJK·PTTI2 | Surrogate of SV* |
RMS | Root mean square of BCG waveform , i = 1~n: |
E | Energy of BCG waveform , i = 1~n: |
R1 | CP | R2 | MA | R3 | SB | R4 | BH | R5 | |
---|---|---|---|---|---|---|---|---|---|
DP | Min | Max | Min | Max | Min | Min | Min | Max | Min |
PP | Min | Max | Min | Max | Min | Min | Min | Max | Min |
SP | Min | Max | Min | Max | Min | Min | Min | Max | Min |
SV | Max | Min | Max | Min | Max | Min | Max | Min | Max |
CO | Min | Max | Min | Max | Min | Min | Min | Min | Min |
TPR | Min | Max | Min | Max | Min | Min | Min | Max | Min |
DP | PP | SP | SV | CO | TPR | |
---|---|---|---|---|---|---|
Weighing Scale BCG: Univriate (r: mean ± SE) | ||||||
Features | PTTI | PTTI | PTTI | AJ | TJJ | PTTI |
r | 0.81 ± 0.02 | 0.65 ± 0.05 | 0.82 ± 0.02 | 0.50 ± 0.09 | 0.57 ± 0.11 | 0.58 ± 0.07 |
Synthetic Weighing Scale BCG: Univariate (r: mean ± SE) | ||||||
Features | PTTJ | PTTJ | PTTJ | TJJ | TJJ | TJJ |
r | 0.36 ± 0.12 | 0.53 ± 0.06 | 0.42 ± 0.11 | 0.34 ± 0.10 | 0.57 ± 0.10 | 0.50 ± 0.10 |
Weighing Scale BCG: Bivariate (r: mean ± SE) | ||||||
Features | PTTI, AI | PTTI, AIJ | PTTI, AJK | AJ, AJK | TJJ, PTTJ | TJJ, AIJ·PTTI2 |
r | 0.85 ± 0.02 | 0.85 ± 0.02 | 0.86 ± 0.02 | 0.73 ± 0.04 | 0.76 ± 0.05 | 0.77 ± 0.03 |
Synthetic Weighing Scale BCG: Bivariate (r: mean ± SE) | ||||||
Features | PTTI, AI | TJJ, PTTI | AJK, AIJ·PTTI2 | TJJ, AIJ·PTTI2 | TJJ, PTTJ | TJJ, AJK·PTTI2 |
r | 0.73 ± 0.04 | 0.74 ± 0.04 | 0.73 ± 0.04 | 0.64 ± 0.06 | 0.76 ± 0.04 | 0.75 ± 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Shin, S.; Mousavi, A.; Kim, C.-S.; Xu, L.; Mukkamala, R.; Hahn, J.-O. Unobtrusive Estimation of Cardiovascular Parameters with Limb Ballistocardiography. Sensors 2019, 19, 2922. https://doi.org/10.3390/s19132922
Yao Y, Shin S, Mousavi A, Kim C-S, Xu L, Mukkamala R, Hahn J-O. Unobtrusive Estimation of Cardiovascular Parameters with Limb Ballistocardiography. Sensors. 2019; 19(13):2922. https://doi.org/10.3390/s19132922
Chicago/Turabian StyleYao, Yang, Sungtae Shin, Azin Mousavi, Chang-Sei Kim, Lisheng Xu, Ramakrishna Mukkamala, and Jin-Oh Hahn. 2019. "Unobtrusive Estimation of Cardiovascular Parameters with Limb Ballistocardiography" Sensors 19, no. 13: 2922. https://doi.org/10.3390/s19132922
APA StyleYao, Y., Shin, S., Mousavi, A., Kim, C. -S., Xu, L., Mukkamala, R., & Hahn, J. -O. (2019). Unobtrusive Estimation of Cardiovascular Parameters with Limb Ballistocardiography. Sensors, 19(13), 2922. https://doi.org/10.3390/s19132922