Rateless Coded Uplink Transmission Design for Multi-User C-RAN
Abstract
:1. Introduction
1.1. Motivation and Related Works
1.2. Contributions
- (1)
- We propose a rateless coded uplink transmission scheme for two-user C-RAN with two RRHs, including the quantizer at each RRH and the iterative multi-user detector and decoder based on the belief propagation (BP) algorithm at the BBU pool.
- (2)
- We resort to extrinsic information transfer (EXIT) to analyze the iterative detecting and decoding process at the BBU pool. Based on this, the condition for successfully decoding is derived.
- (3)
- Based on the EXIT analysis, we optimize the degree profiles of the Raptor code for each user. Explicitly, we search the optimal degree profiles to minimize the threshold signal-to-noise ratio (SNR) under a fixed average Raptor code length and the condition of successfully decoding over all possible channel states. Therefore, the resulted degree profiles are optimal in an average sense over all possible channel states.
2. System Model
3. Rateless Coded Uplink Transmission Scheme
3.1. Rateless Encoder at the User
3.2. Scalar Quantizer at the RRH
3.3. Iterative Detecting and Decoding at the BBU Pool
4. Decoding Performance Analysis and Degree Profile Design
4.1. EXIT Analysis of the Decoding Process
4.2. Degree Profile Optimization
- (1)
- Initialization: We first initialize the vector population as the 0th generation, where each vector individual represents one degree profile, and NP is the number of individuals. represents the coefficient for degree b in the profile, and dc is the maximal degree. should satisfy the conditions of and in the problem (30).
- (2)
- Mutation: For the th generation, the mutation vector of the next generation can be generated by
- (3)
- Crossover: Cross and to get (where , ):
- (4)
- Selection: We select individuals for the next generation by (where ):
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, S.; Singh, N. Internet of Things (IoT): Security Challenges, Business Opportunities & Reference Architecture for E-Commerce. In Proceedings of the 2015 International Conference on Green Computing & Internet of Things, Noida, India, 8–10 October 2015. [Google Scholar]
- Torchia, M.K.M. IDC’s Worldwide Internet of Things Connectivity Taxonomy; IDC Corp: Framingham, MA, USA, 2017. [Google Scholar]
- Miyanabe, K.; Rodrigues, T.G.; Lee, Y.; Nishiyama, H.; Kato, N. An Internet of Things Traffic-Based Power Saving Scheme in Cloud-Radio Access Network. IEEE Internet Things J. 2018, 6, 1. [Google Scholar] [CrossRef]
- Yao, J.J.; Ansari, N. Joint content placement and storage allocation in C-RANs for IoT sensing service. IEEE Internet Things J. 2019, 6, 1060–1067. [Google Scholar] [CrossRef]
- Mouawad, M.; Dziong, Z.; El-Ashmawy, A. Load Balancing in 5G C-RAN Based on Dynamic BBU-RRH Mapping Supporting IoT Communications. In Proceedings of the 2018 IEEE Global Conference on Internet of Things, Alexandria, Egypt, 5–7 December 2018. [Google Scholar]
- Lu, W.D.; Hu, S.; Liu, X.; He, C.X.; Gong, Y. Incentive Mechanism Based Cooperative Spectrum Sharing for OFDM Cognitive IoT Network. IEEE Trans. Netw. Sci. Eng. 2019, 1. [Google Scholar] [CrossRef]
- Checko, A.; Christiansen, H.L.; Yan, Y.; Scolari, L. Cloud RAN for Mobile Networks—A Technology Overview. IEEE Commun. Surv. Tutor. 2015, 17, 405–426. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.F.; Hong, Y.; Wen, Y. Cloud Radio Access Network (C-RAN): A Primer. IEEE Netw. 2015, 29, 35–41. [Google Scholar] [CrossRef]
- Park, S.H.; Simeone, O.; Sahin, O.; Shitz, S.S. Fronthaul Compression for Cloud Radio Access Networks: Signal processing advances inspired by network information theory. IEEE Signal Process. Mag. 2014, 31, 69–79. [Google Scholar] [CrossRef]
- Kang, J.; Simeone, O.; Kang, J.; Shitz, S.S. Joint Signal and Channel State Information Compression for the Backhaul of Uplink Network MIMO Systems. IEEE Trans. Wirel. Commun. 2013, 13, 1555–1567. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, W. Fronthaul Compression and Transmit Beamforming Optimization for Multi-Antenna Uplink C-RAN. IEEE Trans. Signal Process. 2016, 64, 4138–4151. [Google Scholar] [CrossRef] [Green Version]
- Park, S.H.; Simeone, O.; Sahin, O.; Shamai, S. Joint Precoding and Multivariate Backhaul Compression for the Downlink of Cloud Radio Access Networks. IEEE Trans. Signal Process. 2013, 61, 5646–5658. [Google Scholar] [CrossRef]
- Marotta, M.A.; Ahmadi, H.; Rochol, J.; DaSilva, L.; Both, C.B. Characterizing the Relation Between Processing Power and Distance Between BBU and RRH in A Cloud RAN. IEEE Wirel. Commun. Lett. 2018, 7, 472–475. [Google Scholar] [CrossRef]
- Shokrollahi, A. Raptor codes. IEEE Trans. Inf. Theory 2006, 52, 2551–2567. [Google Scholar] [CrossRef]
- Castura, J.; Mao, Y.Y. Rateless Coding Over Fading Channels. IEEE Commun. Lett. 2006, 10, 46–48. [Google Scholar] [CrossRef]
- Wubben, D.; Rost, P.; Bartelt, J.S.; Lalam, M.; Savin, V.; Gorgoglione, M.; Dekorsy, A.; Fettweis, G. Benefits and Impact of Cloud Computing on 5G Signal Processing: Flexible centralization through cloud-RAN. IEEE Signal Process. Mag. 2014, 31, 35–44. [Google Scholar] [CrossRef]
- Park, S.; Chae, C.B.; Bahk, S. Large-scale antenna operation in heterogeneous cloud radio access networks: A partial centralization approach. IEEE Wirel. Commun. 2015, 22, 32–40. [Google Scholar] [CrossRef]
- Dotsch, U.; Doll, M.; Mayer, H.P.; Schaich, F.; Segel, J.; Sehier, P. Quantitative analysis of split base station processing and determination of advantageous architectures for LTE. Bell Labs Tech. J. 2013, 18, 105–128. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, J.; Letaief, K.B.; Bai, B.; Chen, W. Large-scale convex optimization for ultra-dense cloud-RAN. IEEE Wirel. Commun. 2015, 22, 84–91. [Google Scholar] [CrossRef]
- Park, S.H.; Simeone, O.; Shamai, S. Joint Optimization of Cloud and Edge Processing for Fog Radio Access Networks. IEEE Trans. Wirel. Commun. 2016, 15, 7621–7632. [Google Scholar] [CrossRef]
- Vien, Q.T.; Le, T.A.; Barn, B.; Phan, C. Optimising Energy Efficiency of NOMA for Wireless Backhaul in Heterogeneous CRAN. IET Commun. 2016, 10, 2516–2524. [Google Scholar] [CrossRef]
- Tran, H.Q.; Truong, P.Q.; Phan, C.V.; Vien, Q.T. On the Energy Efficiency of NOMA for Wireless Backhaul in Multi-Tier Heterogeneous CRAN. In Proceedings of the 2017 International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), Da Nang, Vietnam, 9–11 Jane 2017. [Google Scholar]
- Chen, G.J.; Yang, F.L.; Niu, K.; Dong, C. Linear Predictive Coding Based Compression Algorithm for Fronthaul Link in C-RAN. In Proceedings of the 2017 IEEE/CIC International Conference on Communications in China, Qingdao, China, 22–24 October 2017. [Google Scholar]
- Kang, J.; Simeone, O.; Kang, J.; Shamai, S. Layered Downlink Precoding for C-RAN Systems with Full Dimensional MIMO. IEEE Trans. Veh. Technol. 2016, 66, 2170–2182. [Google Scholar] [CrossRef]
- He, Z.; Hu, C.; Peng, T.; Ma, C. A compression scheme for LTE baseband signal in C-RAN. In Proceedings of the International Conference on Communications & Networking in China, Shanghai, China, 14–16 August 2014. [Google Scholar]
- Kang, J.; Simeone, O.; Kang, J.; Shamai, S. Fronthaul Compression and Precoding Design for C-RANs over Ergodic Fading Channels. IEEE Trans. Veh. Technol. 2015, 65, 5022–5032. [Google Scholar] [CrossRef]
- Jeon, Y.; Park, S.H.; Song, C.; Moon, J.; Maeng, S.; Lee, I. Joint Designs of Fronthaul Compression and Precoding for Full-Duplex Cloud Radio Access Networks. IEEE Wirel. Commun. Lett. 2016, 5, 632–635. [Google Scholar] [CrossRef]
- Kang, J.; Simeone, O.; Kang, J.; Shamai, S. Joint Precoding and Fronthaul Optimization for C-Rans in Ergodic Fading Channels. In Proceedings of the IEEE International Conference on Communication Workshop, London, UK, 8–12 June 2015. [Google Scholar]
- Wang, G.; Wu, M.; Sun, Y.; Cavallaro, J.R. GPU Accelerated Scalable Parallel Decoding of LDPC Codes. In Proceedings of the 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2011. [Google Scholar]
- Wübben, D.; Paul, H.; Balleydier, P.; Savin, V.; Rost, P. Decoder Implementation for Cloud Based Architectures. In Proceedings of the Proc. European Conference on Networks and Commun, Bologna, Italy, 23–26 June 2014. [Google Scholar]
- Wubben, D.; Paul, H. Analysis of Virtualized Turbo-decoder Implementation for Cloud-RAN Systems. In Proceedings of the 2016 9th International Symposium on Turbo Codes and Iterative Information Processing, Brest, France, 5–9 September 2016. [Google Scholar]
- Luby, M.; Watson, M.; Gasiba, T.; Stockhammer, T.; Xu, W. Raptor Codes for Reliable Download Delivery in Wireless Broadcast Systems. In Proceedings of the IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, 8–10 January 2006. [Google Scholar]
- Chen, X.M.; Zhang, Z.Y.; Chen, S.L.; Wang, C. Adaptive Mode Selection for Multiuser MIMO Downlink Employing Rateless Codes with Qos Provisioning. IEEE Trans. Wirel. Commun. 2012, 11, 790–799. [Google Scholar] [CrossRef]
- Chen, X.M.; Yuen, C. Efficient Resource Allocation in Rateless Coded MU-MIMO Cognitive Radio Network with Qos Provisioning and Limited Feedback. IEEE Trans. Veh. Technol. 2013, 62, 395–399. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.Y. Joint Network-Channel Coding with Rateless Code Over Multiple Access Relay System. IEEE Trans. Wirel. Commun. 2013, 12, 320–332. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.Y.; Yin, R.; Yu, G.D.; Wang, W. Joint Network-Channel Coding with Rateless Code in Two-Way Relay Systems. IEEE Trans. Wirel. Commun. 2013, 12, 3158–3169. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.F.; Peng, H.; Xie, L.J.; Meng, L.M. Rateless Coded Multi-user Downlink Transmission in Cloud Radio Access Network. In Mobile Networks and Applications; Springer: New York, NY, USA, 2018. [Google Scholar]
- Xie, L.J.; Zhang, Y.; Zhang, Y.F.; Hua, J.Y.; Meng, L.M. Uplink Transmission Scheme Based on Rateless Coding in Cloud-RAN. In Proceedings of the International Conference on Machine Learning and Intelligent Communications, Hangzhou, China, 12 October 2018. [Google Scholar]
- Zhang, Y.; Xu, J.L.; Peng, H.; Lu, W.D.; Hua, J.Y. Rateless Code Profiles Design for Uplink C-RAN under Block Fading Channel. In Proceedings of the 10th International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 18–20 October 2008. [Google Scholar]
- Pukelsheim, F. The Three Sigma Rule. Am. Stat. 1994, 48, 88–91. [Google Scholar] [CrossRef]
- Venkiah, A.; Poulliat, C.; Declercq, D. Analysis and Design of Raptor Codes for Joint Decoding Using Information Content Evolution. IEEE Int. Symp. Inform. Theory 2007, 421–425. [Google Scholar] [CrossRef]
- Auguste, V.; Charly, P.; David, D. Jointly Decoded Raptor Codes: Analysis and Design for the Biawgn Channel. EURASIP J. Wirel. Commun. Netw. 2009, 2009, 657970. [Google Scholar] [CrossRef]
- Etesami, O.; Shokrollahi, A. Raptor Codes on Binary Memoryless Symmetric Channels. IEEE Trans. Inf. Theory 2006, 52, 2033–2051. [Google Scholar] [CrossRef]
- Chen, G.; Yue, G.S.; Wang, X.D. Analysis and Optimization of a Rateless Coded Joint Relay System. IEEE Trans. Wirel. Commun. 2010, 9, 1175–1185. [Google Scholar]
- Venkiah, A.; Piantanida, P.; Poullia, C.; Declercq, D. Rateless Coding for Quasi-Static Fading Channels Using Channel Estimation Accuracy. IEEE Int. Symp. Inform. Theory 2008, 2257–2261. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
Symbol | Annotation |
---|---|
LDPC variable node degree distribution | |
Probability of an LDPC variable node with degree | |
Edge distribution of the LDPC check nodes | |
Probability of an edge connected to an LDPC check node with degree | |
Input node degree distribution for user i | |
Probability of input nodes with degree for user i | |
Edge distribution of the input nodes for user | |
Probability of an edge connected to an input node with degree for user i | |
Output node edge distribution for user | |
Probability of an edge connected to an output node with degree of user | |
Maximum degree of input nodes | |
Maximum degree of LDPC variable nodes | |
Average degree of the input nodes for user |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xu, J.; Peng, H.; Lu, W.; Zhang, Z. Rateless Coded Uplink Transmission Design for Multi-User C-RAN. Sensors 2019, 19, 2978. https://doi.org/10.3390/s19132978
Zhang Y, Xu J, Peng H, Lu W, Zhang Z. Rateless Coded Uplink Transmission Design for Multi-User C-RAN. Sensors. 2019; 19(13):2978. https://doi.org/10.3390/s19132978
Chicago/Turabian StyleZhang, Yu, Jiali Xu, Hong Peng, Weidang Lu, and Zhaoyang Zhang. 2019. "Rateless Coded Uplink Transmission Design for Multi-User C-RAN" Sensors 19, no. 13: 2978. https://doi.org/10.3390/s19132978
APA StyleZhang, Y., Xu, J., Peng, H., Lu, W., & Zhang, Z. (2019). Rateless Coded Uplink Transmission Design for Multi-User C-RAN. Sensors, 19(13), 2978. https://doi.org/10.3390/s19132978