Classifying Diverse Physical Activities Using “Smart Garments”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Smart Textile System
2.4. Activity Classification
2.5. Most Effective Sensors in the SUS
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006, 174, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Sharif, K.; Watad, A.; Bragazzi, N.L.; Lichtbroun, M.; Amital, H.; Shoenfeld, Y. Physical activity and autoimmune diseases: Get moving and manage the disease. Autoimmun. Rev. 2018, 17, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.J.; Roschel, H.; de Sá Pinto, A.L.; Lima, F.R.; Pereira, R.M.R.; Silva, C.A.; Bonfá, E.; Gualano, B. Physical inactivity and sedentary behavior: Overlooked risk factors in autoimmune rheumatic diseases? Autoimmun. Rev. 2017, 16, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Nocon, M.; Hiemann, T.; Müller-Riemenschneider, F.; Thalau, F.; Roll, S.; Willich, S.N. Association of physical activity with all-cause and cardiovascular mortality: A systematic review and meta-analysis. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 239–246. [Google Scholar] [CrossRef]
- Biddle, S.J.; Asare, M. Physical activity and mental health in children and adolescents: A review of reviews. Br. J. Sports Med. 2011, 45, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.A.; Fulton, J.E.; Pratt, M.; Yang, Z.; Adams, E.K. Inadequate physical activity and health care expenditures in the United States. Prog. Cardiovasc. Dis. 2015, 57, 315–323. [Google Scholar] [CrossRef]
- Ussher, M.H.; Owen, C.G.; Cook, D.G.; Whincup, P.H. The relationship between physical activity, sedentary behaviour and psychological wellbeing among adolescents. Soc. Psychiatry Psychiatr. Epidemiol. 2007, 42, 851–856. [Google Scholar] [CrossRef]
- Strath, S.J.; Kaminsky, L.A.; Ainsworth, B.E.; Ekelund, U.; Freedson, P.S.; Gary, R.A.; Richardson, C.R.; Smith, D.T.; Swartz, A.M. Guide to the assessment of physical activity: Clinical and research applications: A scientific statement from the American Heart Association. Circulation 2013, 128, 2259–2279. [Google Scholar] [CrossRef]
- Awais, M.; Mellone, S.; Chiari, L. Physical activity classification meets daily life: Review on existing methodologies and open challenges. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5050–5053. [Google Scholar]
- Steene-Johannessen, J.; Anderssen, S.A.; Van der Ploeg, H.P.; Hendriksen, I.J.M.; Donnelly, A.E.; Brage, S.; Ekelund, U. Are Self-report Measures Able to Define Individuals as Physically Active or Inactive? Med. Sci. Sports Exerc. 2016, 48, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.Y.; Wong, M.S.; Lo, K.H. Clinical applications of sensors for human posture and movement analysis: A review. Prosthet. Orthot. Int. 2007, 31, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Schwickert, L.; Becker, C.; Lindemann, U.; Marechal, C.; Bourke, A.; Chiari, L.; Helbostad, J.L.; Zijlstra, W.; Aminian, K.; Todd, C.; et al. Fall detection with body-worn sensors: A systematic review. Z. Fur Gerontol. Und Geriatrie 2013, 46, 706–719. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, A.; Conway, R.; Meagher, D.; Ólaighin, G. Direct measurement of human movement by accelerometry. Med. Eng. Phys. 2008, 30, 1364–1386. [Google Scholar] [CrossRef] [PubMed]
- Bonato, P. Wearable sensors and systems. From enabling technology to clinical applications. IEEE Eng. Med. Biol. Mag. 2010, 29, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Mokhlespour Esfahani, M.I.; Narimani, R.; Ramezanzadehkoldeh, M. A wearable respiratory plethysmography using flexible sensor. Int. J. Biomed. Eng. Technol. 2012, 11, 364–380. [Google Scholar] [CrossRef]
- Mokhlespour, M.I.; Zobeiri, O.; Akbari, A.; Milani, Y.; Narimani, R.; Moshiri, B.; Parnianpour, M. Sharif-human movement instrumentation system (SHARIF-HMIS) for daily activities. In Proceedings of the Iranian Conference of Biomedical Engineering (ICBME) Tehran, Tehran, Iran, 20–21 December 2012; pp. 143–148. [Google Scholar]
- Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M.A.; Mokhlespour Esfahani, M.I.; Alemi, M.M.; Alabdulkarim, S.; Rashedi, E. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I—“Expected” effects on discomfort, shoulder muscle activity, and work task performance. Appl. Ergon. 2018, 70, 315–322. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M.A.; Mokhlespour Esfahani, M.I.; Alemi, M.M.; Jia, B.; Rashedi, E. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II—“Unexpected” effects on shoulder motion, balance, and spine loading. Appl. Ergon. 2018, 70, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Mokhlespour Esfahani, M.I.; Akbari, A.; Zobeiri, O.; Rashedi, E.; Parnianpour, M. Sharif-human movement instrumentation system (SHARIF-HMIS): Development and validation. Med. Eng. Phys. 2018, 61, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Mokhlespour Esfahani, M.I.; Nussbaum, M.A.; Kong, Z.J. Using a smart textile system for classifying occupational manual material handling tasks: Evidence from lab-based simulations. Ergonomics 2019, 62, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Mokhlespour Esfahani, M.I.; Zobeiri, O.; Moshiri, B.; Narimani, R.; Mehravar, M.; Rashedi, E.; Parnianpour, M. Trunk motion system (TMS) using printed body worn sensor (BWS) via data fusion approach. Sensors 2017, 17, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, J.H.; McGregor, A.H. Body-worn sensor design: What do patients and clinicians want? Ann. Biomed. Eng. 2011, 39, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, J.H.; Chandaria, V.; McGregor, A. Wearable and implantable sensors: The patient’s perspective. Sensors 2012, 12, 16695–16709. [Google Scholar] [CrossRef]
- De Leonardis, G.; Rosati, S.; Balestra, G.; Agostini, V.; Panero, E.; Gastaldi, L.; Knaflitz, M. Human Activity Recognition by Wearable Sensors: Comparison of different classifiers for real-time applications. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6. [Google Scholar]
- Dalsgaard, C.; Sterrett, R. White Paper on Smart Textile Garments and Devices: A Market Overview of Smart Textile Wearable Technologies; Market Opportunities for Smart Textiles: Ohmatex, Denmark, 2014. [Google Scholar]
- Steven Eyobu, O.; Han, D.J.S. Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network. Sensors 2018, 18, 2892. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L.J.P.R.L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett. 2019, 119, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Li, W.; Cao, J.J.S. A user-adaptive algorithm for activity recognition based on k-means clustering, local outlier factor, and multivariate gaussian distribution. Sensors 2018, 18, 1850. [Google Scholar] [CrossRef]
- Cleland, I.; Kikhia, B.; Nugent, C.; Boytsov, A.; Hallberg, J.; Synnes, K.; McClean, S.; Finlay, D. Optimal placement of accelerometers for the detection of everyday activities. Sensors 2013, 13, 9183–9200. [Google Scholar] [CrossRef]
- Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Moncada-Torres, A.; Leuenberger, K.; Gonzenbach, R.; Luft, A.; Gassert, R. Activity classification based on inertial and barometric pressure sensors at different anatomical locations. Physiol. Meas. 2014, 35, 1245. [Google Scholar] [CrossRef] [PubMed]
- Masse, F.; Gonzenbach, R.R.; Arami, A.; Paraschiv-Ionescu, A.; Luft, A.R.; Aminian, K. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients. J. Neuroeng. Rehabil. 2015, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Moufawad El Achkar, C.; Lenoble-Hoskovec, C.; Paraschiv-Ionescu, A.; Major, K.; Bula, C.; Aminian, K. Instrumented shoes for activity classification in the elderly. Gait Posture 2016, 44, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.C.J.I.S.J. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2014, 15, 1321–1330. [Google Scholar] [CrossRef]
- Lara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable Sensors. IEEE Commun. Surv. Tutor. 2012, 15, 1192–1209. [Google Scholar] [CrossRef]
- Mokhlespour Esfahani, M.I.; Nussbaum, M.A. Preferred placement and usability of a smart textile system vs. inertial measurement units for activity monitoring. Sensors 2018, 18, 2501–2515. [Google Scholar] [CrossRef]
- Cherenack, K.; van Pieterson, L. Smart textiles: Challenges and opportunities. J. Appl. Phys. 2012, 112, 091301–091314. [Google Scholar] [CrossRef]
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001. [Google Scholar] [CrossRef]
- Mokhlespour Esfahani, M.I.; Nussbaum, M.A. Using Smart Garments to Differentiate among Normal and Simulated Abnormal Gaits. J. Biomech. 2019. In Press, Corrected Proof. [Google Scholar] [CrossRef]
- Mattmann, C.; Clemens, F.; Troster, G. Sensor for measuring strain in textile. Sensors 2008, 8, 3719–3732. [Google Scholar] [CrossRef] [PubMed]
- Andriacchi, T.; Ogle, J.; Galante, J. Walking speed as a basis for normal and abnormal gait measurements. J. Biomech. 1977, 10, 261–268. [Google Scholar] [CrossRef]
- Kantowitz, B.; Roediger, H., III; Elmes, D. Experimental Psychology; Nelson Education: Scorborough, ON, Canada, 2014. [Google Scholar]
- Bersch, S.D.; Azzi, D.; Khusainov, R.; Achumba, I.E.; Ries, J. Sensor data acquisition and processing parameters for human activity classification. Sensors 2014, 14, 4239–4270. [Google Scholar] [CrossRef] [PubMed]
- Mokhlespour Esfahani, M.I.; Nussbaum, M.A. A “smart” undershirt for tracking upper body motions: Task classification and angle estimation. IEEE Sens. J. 2018, 18, 7650–7658. [Google Scholar] [CrossRef]
- Tirosh, O.; Begg, R.; Passmore, E.; Knopp-Steinberg, N. Wearable textile sensor sock for gait analysis. In Proceedings of the 2013 Seventh International Conference on Sensing Technology (ICST), Wellington, New Zealand, 3–5 December 2013; pp. 618–622. [Google Scholar]
- Mokhlespour Esfahani, M.I.; Taghinedjad, S.; Mottaghitalab, V.; Narimani, R.; Parnianpour, M. Novel printed body worn sensor for measuring the human movement orientation. Sens. Rev. 2016, 36, 321–331. [Google Scholar] [CrossRef]
- Pezzack, J.; Norman, R.; Winter, D. An assessment of derivative determining techniques used for motion analysis. J. Biomech. 1977, 10, 377–382. [Google Scholar] [CrossRef]
- Khusainov, R.; Azzi, D.; Achumba, I.E.; Bersch, S.D. Real-time human ambulation, activity, and physiological monitoring: Taxonomy of issues, techniques, applications, challenges and limitations. Sensors 2013, 13, 12852–12902. [Google Scholar] [CrossRef]
- Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.J.; Howard, D.; Meijer, K.; Crompton, R. Activity identification using body-mounted sensors—A review of classification techniques. Physiol. Meas. 2009, 30, 1–33. [Google Scholar] [CrossRef]
- Bulling, A.; Blanke, U.; Schiele, B. A tutorial on human activity recognition using body-worn inertial sensors. Acm Comput. Surv. 2014, 46, 33. [Google Scholar] [CrossRef]
- Mannini, A.; Sabatini, A.M. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 2010, 10, 1154–1175. [Google Scholar] [CrossRef]
- Incel, O.D.; Kose, M.; Ersoy, C. A review and taxonomy of activity recognition on mobile phones. BioNanoScience 2013, 3, 145–171. [Google Scholar] [CrossRef]
- Avci, A.; Bosch, S.; Marin-Perianu, M.; Marin-Perianu, R.; Havinga, P. Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey. In Proceedings of the Architecture of Computing Systems (ARCS), 2010 23rd International Conference on, Hannover, Germany, 22–23 February 2010; pp. 1–10. [Google Scholar]
- Siuly, S.; Li, Y.; Zhang, Y. EEG Signal Analysis and Classification: Techniques and Applications; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Chernoff, H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 1952, 23, 493–507. [Google Scholar] [CrossRef]
- Noshad, M.; Hero, A.O. Rate-Optimal Meta Learning of Classification Error. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 2481–2485. [Google Scholar]
- Lindemann, U.; Zijlstra, W.; Aminian, K.; Chastin, S.F.; de Bruin, E.D.; Helbostad, J.L.; Bussmann, J.B. Recommendations for standardizing validation procedures assessing physical activity of older persons by monitoring body postures and movements. Sensors 2014, 14, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.; Cahalin, L.; Buman, M.; Ross, R. The current state of physical activity assessment tools. Prog. Cardiovasc. Dis. 2015, 57, 387–395. [Google Scholar] [CrossRef]
- Berendsen, B.A.; Hendriks, M.R.; Meijer, K.; Plasqui, G.; Schaper, N.C.; Savelberg, H.H. Which activity monitor to use? Validity, reproducibility and user friendliness of three activity monitors. BMC Public Health 2014, 14, 749. [Google Scholar] [CrossRef]
- Van Uffelen, J.G.Z.; Wong, J.; Chau, J.Y.; van der Ploeg, H.P.; Riphagen, I.; Gilson, N.D.; Burton, N.W.; Healy, G.N.; Thorp, A.A.; Clark, B.K.; et al. Occupational Sitting and Health Risks: A Systematic Review. Am. J. Prev. Med. 2010, 39, 379–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, L.-J.; Chang, A.T.; Coppieters, M.W.; Hodges, P.W. Changes in sitting posture induce multiplanar changes in chest wall shape and motion with breathing. Respir. Physiol. Neurobiol. 2010, 170, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Bauman, A.E.; Chau, J.Y.; Ding, D.; Bennie, J. Too Much Sitting and Cardio-Metabolic Risk: An Update of Epidemiological Evidence. Curr. Cardiovasc. Risk Rep. 2013, 7, 293–298. [Google Scholar] [CrossRef]
- Gill, J.M.; Cooper, A.R. Physical activity and prevention of type 2 diabetes mellitus. Sports Med. 2008, 38, 807–824. [Google Scholar] [CrossRef]
Measure | Mean (SD) | Range |
---|---|---|
Age (years) | 21.3 (2.5) | 18–26 |
Body mass (kg) | 76.2 (8.2) | 64.4–86 |
Stature (cm) | 174.5 (7.4) | 163–186 |
BMI (kg/m2) | 25.0 (2.6) | 22.4–29.4 |
P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | Mean (SD) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Walking | Slow | 2.1 | 1.9 | 2.0 | 2.1 | 2.1 | 2.1 | 2.0 | 2.2 | 1.9 | 2.2 | 2.3 | 2.08 (0.12) |
Comfortable | 2.6 | 2.4 | 2.5 | 2.6 | 2.6 | 2.6 | 2.5 | 2.8 | 2.4 | 2.7 | 2.9 | 2.6 (0.15) | |
Fast | 3.1 | 2.9 | 3.0 | 3.1 | 3.1 | 3.1 | 3.0 | 3.4 | 2.9 | 3.2 | 3.5 | 3.12 (0.19) | |
Running | Comfortable | 5.6 | 4.6 | 5.7 | 5.5 | 5.5 | 5.8 | 6.0 | 4.2 | 5.4 | 6.3 | 5.1 | 5.43 (0.6) |
Fast | 6.7 | 5.5 | 6.8 | 6.6 | 6.6 | 7.0 | 7.2 | 5.0 | 6.5 | 7.6 | 6.1 | 6.51 (0.74) |
Model | Individual Level | Group Level | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | |||
K-NN | SSs | 97 | 97 | 98 | 99 | 98 | 99 | 96 | 98 | 97 | 96 | 96 | 97 |
SUS | 95 | 97 | 97 | 98 | 98 | 97 | 96 | 95 | 98 | 96 | 91 | 96 | |
STS | 97 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 99 | 98 | 96 | 98 | |
LDA | SSs | 69 | 89 | 90 | 91 | 83 | 92 | 72 | 81 | 90 | 75 | 83 | 15 |
SUS | 87 | 91 | 89 | 92 | 96 | 94 | 88 | 84 | 96 | 90 | 82 | 42 | |
STS | 94 | 96 | 97 | 97 | 99 | 97 | 92 | 96 | 98 | 96 | 93 | 47 | |
ANN | SSs | 95 | 94 | 97 | 98 | 98 | 98 | 93 | 93 | 95 | 90 | 93 | 90 |
SUS | 95 | 99 | 98 | 99 | 98 | 98 | 97 | 95 | 98 | 88 | 90 | 94 | |
STS | 97 | 99 | 99 | 99 | 99 | 99 | 98 | 99 | 99 | 98 | 98 | 98 |
Model | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
K-NN | SSs | 0.96 | 0.99 | 0.99 | 0.97 | 0.99 | 0.94 | 0.93 | 0.95 | 0.98 | 0.99 | 0.97 |
SUS | 0.92 | 0.99 | 0.99 | 0.9 | 0.99 | 0.93 | 0.93 | 0.95 | 0.96 | 0.96 | 0.97 | |
STS | 0.96 | 0.99 | 0.99 | 0.95 | 0.99 | 0.95 | 0.95 | 0.97 | 0.98 | 0.98 | 0.98 | |
LDA | SSs | 0 | 0.2 | 0.21 | 0 | 0.13 | 0.17 | 0.09 | 0.08 | 0.19 | 0.13 | 0.11 |
SUS | 0.26 | 0.78 | 0.52 | 0.02 | 0.52 | 0.23 | 0.26 | 0.38 | 0.39 | 0.5 | 0.23 | |
STS | 0.79 | 0.6 | 0.11 | 0.58 | 0.38 | 0.31 | 0.43 | 0.45 | 0.49 | 0.3 | 0.35 | |
ANN | SSs | 0.78 | 0.97 | 0.92 | 0.84 | 0.97 | 0.82 | 0.83 | 0.84 | 0.96 | 0.96 | 0.88 |
SUS | 0.88 | 0.99 | 0.99 | 0.81 | 0.99 | 0.90 | 0.90 | 0.92 | 0.94 | 0.94 | 0.95 | |
STS | 0.97 | 0.99 | 0.99 | 0.97 | 0.99 | 0.96 | 0.96 | 0.97 | 0.99 | 0.99 | 0.98 |
Sensitivity | Specificity | Precision | Accuracy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SS | SUS | CSTS | SS | SUS | CSTS | SS | SUS | CSTS | SS | SUS | CSTS | |
A1 | 0.96 | 0.87 | 0.93 | 0.99 | 0.99 | 0.99 | 0.95 | 0.97 | 0.99 | 0.99 | 0.99 | 0.99 |
A2 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
A3 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
A4 | 0.98 | 0.86 | 0.95 | 0.99 | 0.99 | 0.99 | 0.96 | 0.94 | 0.96 | 0.99 | 0.99 | 0.99 |
A5 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 |
A6 | 0.93 | 0.92 | 0.94 | 0.99 | 0.99 | 0.99 | 0.96 | 0.93 | 0.95 | 0.98 | 0.98 | 0.99 |
A7 | 0.94 | 0.95 | 0.96 | 0.99 | 0.98 | 0.99 | 0.92 | 0.91 | 0.94 | 0.98 | 0.98 | 0.99 |
A8 | 0.94 | 0.95 | 0.97 | 0.99 | 0.99 | 0.99 | 0.95 | 0.94 | 0.96 | 0.99 | 0.99 | 0.99 |
A9 | 0.99 | 0.96 | 0.98 | 0.99 | 0.99 | 0.99 | 0.98 | 0.97 | 0.98 | 0.99 | 0.99 | 0.99 |
A10 | 0.99 | 0.96 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.95 | 0.98 | 0.99 | 0.99 | 0.99 |
A11 | 0.96 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | 0.96 | 0.98 | 0.99 | 0.99 | 0.99 |
Mean | 0.97 | 0.95 | 0.97 | 0.99 | 0.99 | 0.99 | 0.97 | 0.96 | 0.98 | 0.99 | 0.99 | 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokhlespour Esfahani, M.I.; Nussbaum, M.A. Classifying Diverse Physical Activities Using “Smart Garments”. Sensors 2019, 19, 3133. https://doi.org/10.3390/s19143133
Mokhlespour Esfahani MI, Nussbaum MA. Classifying Diverse Physical Activities Using “Smart Garments”. Sensors. 2019; 19(14):3133. https://doi.org/10.3390/s19143133
Chicago/Turabian StyleMokhlespour Esfahani, Mohammad Iman, and Maury A. Nussbaum. 2019. "Classifying Diverse Physical Activities Using “Smart Garments”" Sensors 19, no. 14: 3133. https://doi.org/10.3390/s19143133
APA StyleMokhlespour Esfahani, M. I., & Nussbaum, M. A. (2019). Classifying Diverse Physical Activities Using “Smart Garments”. Sensors, 19(14), 3133. https://doi.org/10.3390/s19143133