Cu/CuO@ZnO Hollow Nanofiber Gas Sensor: Effect of Hollow Nanofiber Structure and P–N Junction on Operating Temperature and Sensitivity
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. CO Gas Sensitivity of ZnO Hollow Nanofiber
3.1.1. Effect of Annealing Temperature and Time on ZnO Nanofiber Morphology
3.1.2. Effect of Calcination Temperature on ZnO Nanofiber Sensitivity
3.2. CO Gas Sensitivity of Cu/CuO@ZnO HNF
3.2.1. Effect of CuAc2 Concentration on ZnO Hollow-Nanofiber Morphology
3.2.2. CO Gas Response of Cu/CuO-Photodeposited ZnO Hollow Nanofibers (Cu/CuO@ZnO HNF)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, R.; Mittal, J.; Kushwaha, N.; Rao, B.V.; Pandey, S.; Liu, C.P. Room temperature carbon monoxide gas sensor using Cu doped OMS-2 nanofibers. Sens. Actuators B Chem. 2018, 266, 751–760. [Google Scholar] [CrossRef]
- Raub, J.A.; Mathieu-Nolf, M.; Hampson, N.B.; Thom, S.R. Carbon monoxide poisoning—A public health perspective. Toxicology 2000, 145, 1–14. [Google Scholar] [CrossRef]
- Lim, S.K.; Hong, S.H.; Hwang, S.H.; Choi, W.M.; Kim, S.; Park, H.; Jeong, M.G. Synthesis of Al-doped ZnO nanorods via microemulsion method and their application as a CO gas sensor. J. Mater. Sci. Technol. 2015, 31, 639–644. [Google Scholar] [CrossRef]
- Lim, S.K.; Hwang, S.-H.; Chang, D.; Kim, S. Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens. Actuators B Chem. 2010, 149, 28–33. [Google Scholar] [CrossRef]
- Lim, S.K.; Hwang, S.-H.; Kim, S.; Park, H. Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor. Sens. Actuators B Chem. 2011, 160, 94–98. [Google Scholar] [CrossRef]
- Zhang, Z.; Yin, C.; Yang, L.; Jiang, J.; Guo, Y. Optimizing the gas sensing characteristics of Co-doped SnO2 thin film based hydrogen sensor. J. Alloys Compd. 2019, 785, 819–825. [Google Scholar] [CrossRef]
- Haiduk, Y.S.; Khort, A.A.; Lapchuk, N.M.; Savitsky, A.A. Study of WO3–In2O3 nanocomposites for highly sensitive CO and NO2 gas sensors. J. Solid State Chem. 2019, 273, 25–31. [Google Scholar] [CrossRef]
- Basu, A.K.; Chauhan, P.S.; Awasthi, M.; Bhattacharya, S. α-Fe2O3 loaded rGO nanosheets based fast response/recovery CO gas sensor at room temperature. Appl. Surf. Sci. 2019, 465, 56–66. [Google Scholar] [CrossRef]
- Han, C.; Li, X.; Shao, C.; Li, X.; Ma, J.; Zhang, X.; Liu, Y. Composition-controllable p-CuO/n-ZnO hollow nanofibers for high-performance H2S detection. Sens. Actuators B Chem. 2019, 285, 495–503. [Google Scholar] [CrossRef]
- Datta, N.; Ramgir, N.; Kaur, M.; Kailasa Ganapathi, S.; Debnath, A.K.; Aswal, D.K.; Gupta, S.K. Selective H2S sensing characteristics of hydrothermally grown ZnO-nanowires network tailored by ultrathin CuO layers. Sens. Actuators B 2012, 166–167, 394–401. [Google Scholar] [CrossRef]
- Yoon, D.H.; Yu, J.H.; Choi, G.M. CO gas sensing properties of ZnO–CuO composite. Sens. Actuators B Chem. 1998, 46, 15–23. [Google Scholar] [CrossRef]
- Tuncel, D.; Ökte, A.N. ZnO@CuO derived from Cu-BTC for efficient UV-induced photocatalytic applications. Catal. Today 2019, 328, 149–156. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, T.; Dong, Y.; Wang, X. A room temperature VOCs gas sensor based on a layer by layer multi-walled carbon nanotubes/poly-ethylene glycol composite. Sensors 2018, 18, 3113. [Google Scholar] [CrossRef] [PubMed]
- Nandy, T.; Coutu, R.A.; Ababei, C. Carbon monoxide sensing technologies for next-generation cyber-physical systems. Sensors 2018, 18, 3443. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.; Jeon, S.H.; Lee, C.H.; Lee, J.H.; Yu, Y.T. Functionalization of ZnO nanorods by CuO nanospikes for gas sensor applications. RSC Adv. 2014, 4, 23604–23609. [Google Scholar] [CrossRef]
- Youl Bae, H.; Man Choi, G. Electrical and reducing gas sensing properties of ZnO and ZnO–CuO thin films fabricated by spin coating method. Sens. Actuators B Chem. 1999, 55, 47–54. [Google Scholar] [CrossRef]
- Kayaci, F.; Vempati, S.; Ozgit-Akgun, C.; Donmez, I.; Biyikli, N.; Uyar, T. Transformation of polymer-ZnO core–shell nanofibers into ZnO hollow nanofibers: Intrinsic defect reorganization in ZnO and its influence on the photocatalysis. Appl. Catal. B 2015, 176, 646–653. [Google Scholar] [CrossRef]
- Choi, S.H.; Ankonina, G.; Youn, D.Y.; Oh, S.G.; Hong, J.M.; Rothschild, A.; Kim, I.D. Hollow ZnO nanofibers fabricated using electrospun polymer templates and their electronic transport properties. ACS Nano 2009, 3, 2623–2631. [Google Scholar] [CrossRef]
- Lallave, M.; Bedia, J.; Ruiz-Rosas, R.; Rodríguez-Mirasol, J.; Cordero, T.; Otero, J.C.; Marquez, M.; Barrero, A.; Loscertales, I.G. Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers. Adv. Mater. 2007, 19, 4292–4296. [Google Scholar] [CrossRef]
- Zhao, P.; Yao, M.; Ren, H.; Wang, N.; Komarneni, S. Nanocomposites of hierarchical ultrathin MnO2 nanosheets/hollow carbon nanofibers for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 2019, 463, 931–938. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Wang, C.; Wei, L.; Liu, Y.; Shao, C. ZnO hollow nanofibers: Fabrication from facile single capillary electrospinning and applications in gas sensors. J. Phys. Chem. C 2009, 113, 19397–19403. [Google Scholar] [CrossRef]
- Baquiran, T.L.; Garcia, M.C.T.; Herrera, M.U. Electrical characteristics of zinc oxide-copper oxide heterojunction at different illumination intensities. IOP Conf. Ser. Mater. Sci. Eng. 2017, 201, 012025. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.K.; Kim, M.; Hwang, S.H.; Lim, S.K.; Park, H.; Kim, S. CdS-loaded flexible carbon nanofiber mats as a platform for solar hydrogen production. Int. J. Hydrogen Energy 2015, 40, 136–145. [Google Scholar] [CrossRef]
- Hwang, S.H.; Kim, Y.K.; Yoon, S.H.; Lim, S.K.; Park, H. ZnO rods rooted on manifold carbon nanofiber paper as a scalable photocatalyst platform: The effects of ZnO morphology. RSC Adv. 2016, 6, 85521–85528. [Google Scholar] [CrossRef]
- Kim, Y.K.; Seo, H.J.; Kim, S.; Hwang, S.H.; Park, H.; Lim, S.K. Effect of ZnO electrodeposited on carbon film and decorated with metal nanoparticles for solar hydrogen production. J. Mater. Sci. Technol. 2016, 32, 1059–1065. [Google Scholar] [CrossRef]
- Ishikawa, T.; Yamaoka, H.; Harada, Y.; Fujii, T.; Nagasawa, T. A general process for in situ formation of functional surface layers on ceramics. Nature 2002, 416, 64–67. [Google Scholar] [CrossRef]
- Jeong, H.W.; Choi, S.Y.; Hong, S.H.; Lim, S.K.; Han, D.S.; Abdel-Wahab, A.; Park, H. Shape-dependent charge transfers in crystalline ZnO photocatalysts: Rods versus plates. J. Phys. Chem. C 2014, 118, 21331–21338. [Google Scholar] [CrossRef]
- Dung Dang, T.M.; Tuyet Le, T.T.; Fribourg-Blanc, E.; Chien Dang, M. The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 025004. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Z.; Zhang, H.; Cao, G.; Sun, Q.; Cao, J. CuO nanorods-decorated reduced graphene oxide nanocatalysts for catalytic oxidation of CO. Catalysts 2016, 6, 214. [Google Scholar] [CrossRef]
- Kim, Y.K.; Hwang, S.-H.; Kim, S.; Park, H.; Lim, S.K. ZnO nanostructure electrodeposited on flexible conductive fabric: A flexible photo-sensor. Sens. Actuators B 2017, 240, 1106–1113. [Google Scholar] [CrossRef]
- Krishnakumar, T.; Jayaprakash, R.; Pinna, N.; Donato, N.; Bonavita, A.; Micali, G.; Neri, G. CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route. Sens. Actuators B Chem. 2009, 143, 198–204. [Google Scholar] [CrossRef]
- Chang, J.F.; Kuo, H.H.; Leu, I.C.; Hon, M.H. The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor. Sens. Actuators B Chem. 2002, 84, 258–264. [Google Scholar] [CrossRef]
- Gong, H.; Hu, J.Q.; Wang, J.H.; Ong, C.H.; Zhu, F.R. Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B Chem. 2006, 115, 247–251. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhowmick, T.; Labhasetwar, N.; Majumder, S.B. Catalytic oxidation and selective sensing of carbon monoxide for sense and shoot device using ZnO–CuO hybrids. Materialia 2019, 5, 100177. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, Z.; Jia, Q.; Zhao, J.; Zhao, Z.; Ji, H. A CuO–ZnO nanostructured p–n junction sensor for enhanced N-butanol detection. RSC Adv. 2016, 6, 2504–2511. [Google Scholar] [CrossRef]
- Daemi, S.; Ghasemi, S.; Akbar Ashkarran, A. Electrospun CuO-ZnO nanohybrid: Tuning the nanostructure for improved amperometric detection of hydrogen peroxide as a non-enzymatic sensor. J. Colloid Interface Sci. 2019, 550, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Lau, S.P.; Chen, L.; Lin, J.; Huan, C.H.A.; Tan, K.L.; Pan, J.S. Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis. Appl. Surf. Sci. 1999, 152, 193–199. [Google Scholar] [CrossRef]
- Poloju, M.; Jayababu, N.; Ramana Reddy, M.V. Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater. Sci. Eng. B 2018, 227, 61–67. [Google Scholar] [CrossRef]
Sample | Cu (%) | Zn (%) | Cu/Zn |
---|---|---|---|
ZnO NF-500 | 0 | 100 | 0 |
Cu/CuO(0.1 mM)@ZnO HNF | 8.95 | 91.05 | 0.098 ± 0.007 |
Cu/CuO(0.5 mM)@ZnO HNF | 19.85 | 80.15 | 0.248 ± 0.012 |
Cu/CuO(1 mM)@ZnO HNF | 29.39 | 70.61 | 0.416 ± 0.005 |
Sample | CO (ppm) | Temperature (°C) | Response (%) | Reference |
---|---|---|---|---|
ZnO | 200 | 300 | 90 | [31] |
Al/ZnO | 200 | 300 | 50 | [32] |
CuO/ZnO | 100 | 300 | 63 | [15] |
Cu/ZnO | 100 | 300 | 69 | [33] |
ZnO-CuO/Al2O3 | 200 | 300 | 13 | [16] |
CuO/ZnO | 250 | 175 | 11 | [34] |
Cu/CuO(0.5 mM)@ZnO HNF | 100 | 300 | 78 | This work |
100 | 200 | 65 |
Sample | Electrical Conductivity (S m−1) | BET Surface Area (m2 g−1) |
---|---|---|
ZnO NF-400 (no hollow) | - | 7.8 |
ZnO NF-500 | 6.261 × 10−6 | 12.4 |
Cu/CuO(0.5 mM)@ZnO HNF | 5.195 × 10−5 | 24.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.-H.; Kim, Y.K.; Hong, S.H.; Lim, S.K. Cu/CuO@ZnO Hollow Nanofiber Gas Sensor: Effect of Hollow Nanofiber Structure and P–N Junction on Operating Temperature and Sensitivity. Sensors 2019, 19, 3151. https://doi.org/10.3390/s19143151
Hwang S-H, Kim YK, Hong SH, Lim SK. Cu/CuO@ZnO Hollow Nanofiber Gas Sensor: Effect of Hollow Nanofiber Structure and P–N Junction on Operating Temperature and Sensitivity. Sensors. 2019; 19(14):3151. https://doi.org/10.3390/s19143151
Chicago/Turabian StyleHwang, Sung-Ho, Young Kwang Kim, Seong Hui Hong, and Sang Kyoo Lim. 2019. "Cu/CuO@ZnO Hollow Nanofiber Gas Sensor: Effect of Hollow Nanofiber Structure and P–N Junction on Operating Temperature and Sensitivity" Sensors 19, no. 14: 3151. https://doi.org/10.3390/s19143151
APA StyleHwang, S. -H., Kim, Y. K., Hong, S. H., & Lim, S. K. (2019). Cu/CuO@ZnO Hollow Nanofiber Gas Sensor: Effect of Hollow Nanofiber Structure and P–N Junction on Operating Temperature and Sensitivity. Sensors, 19(14), 3151. https://doi.org/10.3390/s19143151