Raman Analysis of Tear Fluid Alteration Following Contact Lense Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Contact Lenses
2.3. Experimental Set-Up
2.4. Raman Spectra Acquisition and Processing
3. Results and Discussion
3.1. Raman Analysis of Human Tears
3.2. The Effect of Wearing CLs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CLs | Contact Lenses |
RS | Raman Spectroscopy |
DCDRS | Drop Coating Deposition Raman Spectroscopy |
H-CLs | Hydrogel Contact Lens |
SH-CLs | Silicon Hydrogel Contact Lens |
References
- Rantamaki, A.H.; Seppanen-Laakso, T.; Oresic, M.; Jauhiainen, M.; Holopainen, J.M. Human Tear Fluid Lipidome: From Composition to Function. PLoS ONE 2011, 6, e19553. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.M.; Tong, L.; Duan, X.; Petznick, A.; Wenk, M.R.; Shui, G. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J. Lipid Res. 2014, 55, 289–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jae Hun, J.; Yong Woo, J.; Ho Sik, H.; Jae Won, O.; Hyun Chang, K.; Hyung Keun, L.; Kwang Pyo, K. Proteomic analysis of human lacrimal and tear fluid in dry eye disease. Sci. Rep. 2017, 7, 13363. [Google Scholar]
- Cwiklik, L. Tear film lipid layer: A molecular level view. BBA Biomembr. 2016, 1858, 2421–2430. [Google Scholar] [CrossRef] [PubMed]
- Mann, A.; Tighe, B. Contact lens interactions with the tear film. Exp. Eye Res. 2013, 117, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Greiner, J.; Allansmith, M. Effect of Contact Lens Wear on the Conjunctival Mucous System. Ophthalmology 1981, 88, 821–832. [Google Scholar] [CrossRef]
- Jones, L.; Senchyna, M.; Glasier, M.; Schickler, J.; Forbes, I.; Louie, D.; May, C. Lysozyme and Lipid Deposition on Silicone Hydrogel Contact Lens Materials. Eye Contact Lens 2003, 29, S75–S79. [Google Scholar] [CrossRef] [PubMed]
- Michaud, L.; van der Worp, E.; Brazeau, D.; Warde, R.; Giasson, C. Predicting estimates of oxygen transmissibility for scleral lenses. Cont. Lens. Anterior Eye 2012, 35, 266–271. [Google Scholar] [CrossRef]
- Maissa, C.; Franklin, V.; Guillon, M.; Tighe, B. Influence of contact lens material surface characteristics and replacement frequency on protein and lipid deposition. Optom. Vis. Sci. 1998, 75, 697–705. [Google Scholar] [CrossRef]
- Picarazzi, S.; Bergamaschi, D.; Tavazzi, S. Differences between tears of contact lens wearers studied by photon correlation spectroscopy. Contact Lens Anterior Eye 2019, 42, 212–215. [Google Scholar] [CrossRef]
- Muntz, A.; Subbaraman, L.; Sorbara, L.; Jones, L. Tear exchange and contact lenses: A review. Cont. Lens Anterior Eye 2015, 8, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Ammer, R. Effect of Contact Lens Wear on Tear Film Break up Time (TBUT) among Contact Lenses Users. Pak. J. Ophthalmol. 2017, 33, 182–186. [Google Scholar]
- Filik, J.; Stone, N. Raman point mapping of tear ferning patterns. Proc. SPIE 2008, 6853, 685309. [Google Scholar] [CrossRef]
- Filik, J.; Stone, N. Analysis of human tear fluid by Raman spectroscopy. Anal. Chim. Acta 2008, 616, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Filik, J.; Stone, N. Investigation into the protein composition of human tear fluid using centrifugal filters and drop coating deposition Raman spectroscopy. J. Raman Spectrosc. 2008, 40, 218–224. [Google Scholar] [CrossRef]
- Hu, P.; Zheng, X.; Zong, C.; Li, M.; Zhang, L.; Li, W.; Ren, B. Drop-coating deposition and surface-enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears. J. Raman Spectrosc. 2014, 45, 565–573. [Google Scholar] [CrossRef]
- Camerlingo, C.; Lisitskiy, M.; Lepore, M.; Portaccio, M.; Montorio, D.; Del Prete, S.; Cennamo, G. Characterization of Human Tear Fluid by Means of Surface-Enhanced Raman Spectroscopy. Sensors 2019, 19, 1177. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Moon, S.; Shin, J.; Park, H.; Jin, K. Label-free biochemical method for early detection of Adenoviral conjuctivitis using human tear biofluids. Anal. Chem. 2014, 86, 11093–11099. [Google Scholar] [CrossRef] [PubMed]
- Omali, N. Quantification of individual proteins in silicone hydrogel contact lens deposits. Mol. Vis. 2013, 19, 390–399. [Google Scholar] [PubMed]
- Golding, T.; Brennan, N. The basis of tear ferning. Clin. Exp. Optom. 1989, 72, 102–112. [Google Scholar] [CrossRef]
- Murube, J. Tear Crystallization Test: Two Centuries of History. Ocul. Surf. 2004, 2, 7–9. [Google Scholar] [CrossRef]
- Pearce, E.; Tomlinson, A. Spatial location studies on the chemical composition of human tear ferns. Ophthal. Physiol. Opt. 2000, 20, 306–313. [Google Scholar] [CrossRef]
- Short, K.; Carpenter, S.; Freyer, J.; Mourant, J. Raman Spectroscopy Detects Biochemical Changes Due to Proliferation in Mammalian Cell Cultures. Biophys. J. 2005, 88, 4274–4288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gniadecka, M.; Faurskov Nielsen, O.; Christensen, D.; Wulf, H. Structure of Water, Proteins, and Lipids in Intact Human Skin, Hair, and Nail. J. Investig. Dermatol. 1998, 4, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.; Kendall, C.; Smith, J.; Crow, P.; Barr, H. Raman spectroscopy for identification of epithelial cancers. Faraday Discuss. 2004, 126, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Bonnier, R.; Byrne, H. Understanding the Molecular Information Contained in Principal Component Analysis of Vibrational Spectra of Biological Systems. Analyst 2012, 137, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Schie, I.; Huser, T. Methods and applications of Raman microspectroscopy to single-cell analysis. Appl. Spectrosc. 2013, 67, 813–828. [Google Scholar] [CrossRef]
- Polis, B.; Imiela, A.; Polis, L.; Abramczyk, H. Raman spectroscopy for medulloblastoma. Childs Nerv. Syst. 2018, 34, 2425–2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Proprietary Name | LAC Monthly Wet | AirHydra |
United States Adopted Name (USAN) | Wetafilcon | Genifilcon A |
Classification | Hydrogel | Silicon Hydrogel |
Water Content [%] | 55 | 45 |
Dk/t | 19.5 | 70.0 |
Wavenumber (cm) | Assignment | Wavenumber (cm) | Assignment |
---|---|---|---|
1000 | Phe | 1605 | Phe |
1064 | Skeletal (CC)(l) | 1665 | Amide I |
1206 | Aromatic Amino Acids | 2845 | (CH) |
1242 | Amide III | 2875 | (CH) |
1296 | (CH) | 2930 | (CH) |
1301 | CH deformation (l) | 2960 | (CH) |
1440 | (CH)(p,l),(CH)(p) | 3057 | aromatic (CH) |
1553 | Trp | 3300 | (OH) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capaccio, A.; Sasso, A.; Rusciano, G. Raman Analysis of Tear Fluid Alteration Following Contact Lense Use. Sensors 2019, 19, 3392. https://doi.org/10.3390/s19153392
Capaccio A, Sasso A, Rusciano G. Raman Analysis of Tear Fluid Alteration Following Contact Lense Use. Sensors. 2019; 19(15):3392. https://doi.org/10.3390/s19153392
Chicago/Turabian StyleCapaccio, Angela, Antonio Sasso, and Giulia Rusciano. 2019. "Raman Analysis of Tear Fluid Alteration Following Contact Lense Use" Sensors 19, no. 15: 3392. https://doi.org/10.3390/s19153392
APA StyleCapaccio, A., Sasso, A., & Rusciano, G. (2019). Raman Analysis of Tear Fluid Alteration Following Contact Lense Use. Sensors, 19(15), 3392. https://doi.org/10.3390/s19153392