Potential Energy Distribution of Redundant Cable-Driven Robot Applied to Compliant Grippers: Method and Computational Analysis
Abstract
:1. Introduction
1.1. Contribution
1.2. Mechanism Description
1.3. Article Scheme
2. Methodology
2.1. Potential Energy of Cables
2.2. Energy Boundaries
2.3. Selection of Single Cable Energy
2.4. Energy Analysis of the Reconfigurable End-Effector
3. Theoretical Results
3.1. Energy Distribution of the Rigid End-Effector
3.2. Energy Distribution of the Reconfigurable End-Effector
4. Simulated Results
4.1. Rigid Solid End-Effector
4.2. Reconfigurable End-Effector
5. Discussion
6. Conclusions
7. Patents
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
References
- Albus, J.; Bostelman, R.; Dagalakis, N. The NIST robocrane. J. Robot. Syst. 1993, 10, 709–724. [Google Scholar] [CrossRef]
- Li, D.; Wang, P.; Qian, L.; Krco, M.; Dunning, A.; Jiang, P.; Nan, R. FAST in Space: Considerations for a Multibeam, Multipurpose Survey Using China’s 500-m Aperture Spherical Radio Telescope (FAST). IEEE Microw. Mag. 2018, 19, 112–119. [Google Scholar] [CrossRef]
- Gagliardini, L.; Gouttefarde, M.; Caro, S. Design of Reconfigurable Cable-Driven Parallel Robots. In Mechatronics for Cultural Heritage and Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 85–113. [Google Scholar] [Green Version]
- Ebert-Uphoff, I.; Voglewede, P.A. On the connections between cable-driven robots, parallel manipulators and grasping. In Proceedings of the ICRA’04. 2004 IEEE International Conference on Robots, New Orleans, LA, USA, 26 April–1 May 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 5, pp. 4521–4526. [Google Scholar]
- Merlet, J.P. Parallel Robots; Springer Science & Business Media: Berlin, Germany, 2006; Volume 128. [Google Scholar]
- Ottaviano, E.; Castelli, G. A study on the effects of cable mass and elasticity in cable-based parallel manipulators. In ROMANSY 18 Robot Design, Dynamics and Control; Springer: Vienna, Austria, 2010; pp. 149–156. [Google Scholar]
- Rodriguez-Barroso, A.; Saltaren, R.; Portilla, G.; Cely, J.; Carpio, M. Cable-Driven Parallel Robot with Reconfigurable End Effector Controlled with a Compliant Actuator. Sensors 2018, 18, 2765. [Google Scholar] [CrossRef] [PubMed]
- Abbasnejad, G.; Ren, H. Displacement analysis of under-constrained flexible-shaft driven parallel manipulator. In Proceedings of the 2017 IEEE International Conference on Information and Automation (ICIA), Macau SAR, China, 18–20 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 661–665. [Google Scholar]
- Austin, J.; Schepelmann, A.; Geyer, H. Control and evaluation of series elastic actuators with nonlinear rubber springs. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, Hamburg, Germany, 28 September–2 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 6563–6568. [Google Scholar]
- Du, J.; Agrawal, S.K. Dynamic modeling of cable-driven parallel manipulators with distributed mass flexible cables. J. Vib. Acoust. 2015, 137, 021020. [Google Scholar] [CrossRef]
- Behzadipour, S.; Khajepour, A. Stiffness of cable-based parallel manipulators with application to stability analysis. J. Mech. Des. 2006, 128, 303–310. [Google Scholar] [CrossRef]
- Khosravi, M.A.; Taghirad, H.D. Dynamic modeling and control of parallel robots with elastic cables: Singular perturbation approach. IEEE Trans. Robot. 2014, 30, 694–704. [Google Scholar] [CrossRef]
- Baklouti, S.; Caro, S.; Courteille, E. Elasto-Dynamic Model-Based Control of Non-Redundant Cable-Driven Parallel Robots. In ROMANSY 22–Robot Design, Dynamics and Control; Springer: Berlin/Heidelberg, Germany, 2019; pp. 238–246. [Google Scholar]
- Baklouti, S.; Caro, S.; Courteille, E. Sensitivity Analysis of the Elasto-Geometrical Model of Cable-Driven Parallel Robots. In Cable-Driven Parallel Robots; Springer: Berlin/Heidelberg, Germany, 2018; pp. 37–49. [Google Scholar]
- Diao, X.; Ma, O. Vibration analysis of cable-driven parallel manipulators. Multibody Syst. Dyn. 2009, 21, 347–360. [Google Scholar] [CrossRef]
- Jamshidifar, H.; Fidan, B.; Gungor, G.; Khajepour, A. Adaptive vibration control of a flexible cable driven parallel robot. IFAC-PapersOnLine 2015, 48, 1302–1307. [Google Scholar] [CrossRef]
- Weber, X.; Cuvillon, L.; Gangloff, J. Active vibration canceling of a cable-driven parallel robot in modal space. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 25–30 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1599–1604. [Google Scholar]
- Khosravi, M.A.; Taghirad, H.D. Robust PID control of cable-driven robots with elastic cables. In Proceedings of the 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 13–15 February 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 331–336. [Google Scholar]
- Weber, X.; Cuvillon, L.; Gangloff, J. Active vibration canceling of a cable-driven parallel robot using reaction wheels. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1724–1729. [Google Scholar]
- Liu, Z.; Tang, X.; Shao, Z.; Wang, L.; Tang, L. Research on longitudinal vibration characteristic of the six-cable-driven parallel manipulator in FAST. Adv. Mech. Eng. 2013, 5, 547416. [Google Scholar] [CrossRef]
- El-Ghazaly, G.; Gouttefarde, M.; Creuze, V. Adaptive terminal sliding mode control of a redundantly-actuated cable-driven parallel manipulator: Cogiro. In Cable-Driven Parallel Robots; Springer: Berlin/Heidelberg, Germany, 2015; pp. 179–200. [Google Scholar]
- Gosselin, C.; Grenier, M. On the determination of the force distribution in overconstrained cable-driven parallel mechanisms. Meccanica 2011, 46, 3–15. [Google Scholar] [CrossRef]
- Merlet, J.P. On the robustness of cable configurations of suspended cable-driven parallel robots. In Proceedings of the 14th IFToMM World Congress on the Theory of Machines and Mechanisms, Taipei, Taiwan, 25–30 October 2015. [Google Scholar]
- Gosselin, F.; Lallemand, J.P. A new insight into the duality between serial and parallel non-redundant and redundant manipulators. Robotica 2001, 19, 365–370. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Gosselin, C.M. Design and analysis of kinematically redundant parallel manipulators with configurable platforms. IEEE Trans. Robot. 2005, 21, 277–287. [Google Scholar] [CrossRef]
- Berti, A.; Merlet, J.P.; Carricato, M. Workspace analysis of redundant cable-suspended parallel robots. In Cable-Driven Parallel Robots; Springer: Berlin/Heidelberg, Germany, 2015; pp. 41–53. [Google Scholar]
- Slotine, S.B. A general framework for managing multiple tasks in highly redundant robotic systems. In Proceeding of 5th International Conference on Advanced Robotics, Pisa, Italy, 19–22 June 1991; Volume 2, pp. 1211–1216. [Google Scholar]
- Flacco, F.; De Luca, A.; Khatib, O. Control of redundant robots under hard joint constraints: Saturation in the null space. IEEE Trans. Robot. 2015, 31, 637–654. [Google Scholar] [CrossRef]
- Lamaury, J.; Gouttefarde, M. Control of a large redundantly actuated cable-suspended parallel robot. In Proceedings of the 2013 IEEE International Conference on Robots, Karlsruhe, Germany, 6–10 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 4659–4664. [Google Scholar]
- Gouttefarde, M.; Lamaury, J.; Reichert, C.; Bruckmann, T. A Versatile Tension Distribution Algorithm for n-DOF Parallel Robots Driven by n+2 Cables. IEEE Trans. Robot. 2015, 31, 1444–1457. [Google Scholar] [CrossRef]
- Barata, J.C.A.; Hussein, M.S. The Moore–Penrose pseudoinverse: A tutorial review of the theory. Braz. J. Phys. 2012, 42, 146–165. [Google Scholar] [CrossRef]
- Borgstrom, P.H.; Jordan, B.L.; Sukhatme, G.S.; Batalin, M.A.; Kaiser, W.J. Rapid computation of optimally safe tension distributions for parallel cable-driven robots. IEEE Trans. Robot. 2009, 25, 1271–1281. [Google Scholar] [CrossRef]
- Jia, Y.B.; Guo, F.; Lin, H. Grasping deformable planar objects: Squeeze, stick/slip analysis, and energy-based optimalities. Int. J. Robot. Res. 2014, 33, 866–897. [Google Scholar] [CrossRef]
- Inoue, T.; Hirai, S. Parallel-distributed model in three-dimensional soft-fingered grasping and manipulation. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 2092–2097. [Google Scholar]
- Liwen, G.; Huayang, X.; Zhihua, L. Kinematic analysis of cable-driven parallel mechanisms based on minimum potential energy principle. Adv. Mech. Eng. 2015, 7, 1687814015622339. [Google Scholar] [CrossRef]
- Pott, A.; Tempel, P. A Unified Approach to Forward Kinematics for Cable-Driven Parallel Robots Based on Energy. In Proceedings of the International Symposium on Advances in Robot Kinematics, Bologna, Italy, 1–5 July 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 401–409. [Google Scholar]
- Zlatanov, D.S.; Fenton, R.G.; Benhabib, B. Classification and interpretation of the singularities of redundant mechanisms. In Proceedings of the ASME Design Engineering Technical Conference, Atlanta, GA, USA, 13–16 September 1998; pp. 13–16. [Google Scholar]
- Fantoni, I.; Lozano, R.; Spong, M.W. Energy based control of the pendubot. IEEE Trans. Autom. Control 2000, 45, 725–729. [Google Scholar] [CrossRef]
- Martinez-Martin, E.; Del Pobil, A.P. Vision for Robust Robot Manipulation. Sensors 2019, 19, 1648. [Google Scholar] [CrossRef]
- Alama, J. The rank+ nullity theorem. Formaliz. Math. 2019, 15, 137–142. [Google Scholar] [CrossRef]
Inertial Frame | End-Effector | Cable Name |
---|---|---|
P1 | U4, D2 | Cable1, Cable2 |
P2 | U1, D3 | Cable3, Cable4 |
P3 | U2, D4 | Cable5, Cable6 |
P4 | U3, D1 | Cable7, Cable8 |
Nullspace Position | Tension Distribution (N) |
---|---|
(−120.1, 84.39) | [191.6, 83.1, 50.0, 199.7, 531.4, 422.3, 280.3, 447.2] |
(−12.39, 101.5) | [137.5, 72.9, 97.4, 196.2, 484.0, 434.23, 345.23, 447.2] |
(161.6, 129.1) | [50.0, 56.5, 174.0, 190.5, 407.5, 453.5, 450.0, 447.2] |
Nullspace Position | Total Potential Energy (J) | Cable 1 Potential Energy (J) | End-Effector Wrench (N|Nm) |
---|---|---|---|
(−120.1, 84.39) | 412.67 | 18.36 | [200, 0, −1470|−500, 0, 0] |
(−12.39, 101.5) | 407.1 | 9.45 | [200, 0, −1470|−500, 0, 0] |
(161.6, 129.1) | 423.23 | 1.25 | [200, 0, −1470|−500, 0, 0] |
Parameter | Value |
---|---|
Frame dimensions (X, Y, Z) [m] | [10, 5, 6] |
End-effector mass [kg] | 150 |
Gripper mass [kg] | 10.2 |
End-effector center position (X, Y, Z, R, P, Y) [m, rad] | [7, 4, 1.5, 0, 0, ] |
External wrench (FX, FY, FZ, MX, MY, MZ) [N, Nm] | [200, 0, −1470, −500, 0, 0] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Barroso, A.; Saltaren, R.; A. Portilla, G.; S. Cely, J.; Yakrangi, O. Potential Energy Distribution of Redundant Cable-Driven Robot Applied to Compliant Grippers: Method and Computational Analysis. Sensors 2019, 19, 3403. https://doi.org/10.3390/s19153403
Rodriguez-Barroso A, Saltaren R, A. Portilla G, S. Cely J, Yakrangi O. Potential Energy Distribution of Redundant Cable-Driven Robot Applied to Compliant Grippers: Method and Computational Analysis. Sensors. 2019; 19(15):3403. https://doi.org/10.3390/s19153403
Chicago/Turabian StyleRodriguez-Barroso, Alejandro, Roque Saltaren, Gerardo A. Portilla, Juan S. Cely, and Oz Yakrangi. 2019. "Potential Energy Distribution of Redundant Cable-Driven Robot Applied to Compliant Grippers: Method and Computational Analysis" Sensors 19, no. 15: 3403. https://doi.org/10.3390/s19153403
APA StyleRodriguez-Barroso, A., Saltaren, R., A. Portilla, G., S. Cely, J., & Yakrangi, O. (2019). Potential Energy Distribution of Redundant Cable-Driven Robot Applied to Compliant Grippers: Method and Computational Analysis. Sensors, 19(15), 3403. https://doi.org/10.3390/s19153403