Capture Point-Based Controller Using Real-Time Zero Moment Point Manipulation for Stable Bipedal Walking in Human Environment
Abstract
:1. Introduction
2. Modifiable Walking Pattern Generator
2.1. COM Motion of 3-D LIPM
2.2. Desired Walking State from Command State
3. CP-Based Stability Control Method for Dynamically Modifiable Walking
3.1. CP Dynamics
3.2. Reference CP Trajectory Generation in Single Support Phase Using Real-Time ZMP Manipulation
3.3. Reference CP Trajectory Generation in Double Support Phase
3.4. CP Tracking Control
3.5. Handling Infeasible Command States and the Corresponding Desired Walking States
Algorithm 1. Handling infeasible command states and desired walking states. |
/* initialization */ |
/* start binary search algorithm */ |
while do |
if is feasible then |
break; |
else |
end if |
end while |
3.6. Overall Procedure
4. Experimental Results and Discussion
4.1. Simulation Results
- (1)
- Initial command state,
- (2)
- After 2nd step,
- (2-1)
- After at 3rd step,
- (3)
- After 3rd step,
- (4)
- After 4th step,
- (5)
- After 5th step,
- (6)
- After 6th step,
- (7)
- After 7th step,
- (8)
- After 8th step,
- (9)
- After 9th step,
- (10)
- After 10th step,
- (1)
- Initial command state,
- (2)
- After 1st step,
- (3)
- After 2nd step,
- (4)
- After 3rd step,
- (5)
- After 5th step,
4.2. Experimental Results
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Kajita, S.; Kanehiro, F.; Kaneko, K.; Fujiwara, K.; Yokoi, K.; Hirukawa, H. A realtime pattern generator for biped walking. In Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002; Volume 1, pp. 31–37. [Google Scholar]
- Sugihara, T.; Nakamura, Y.; Inoue, H. Realtime humanoid motion generation through ZMP manipulation based on inverted pendulum control. In Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002; Volume 2, pp. 1404–1409. [Google Scholar]
- Nishiwaki, K.; Kagami, S.; Kuniyoshi, Y.; Inaba, M.; Inoue, H. Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; pp. 2684–2689. [Google Scholar]
- Harada, K.; Kajita, S.; Kaneko, K.; Hirukawa, H. An analytical method for real-time gait planning for humanoid robots. Int. J. Hum. Robot. 2006, 2, 1–19. [Google Scholar] [CrossRef]
- Erbatur, K.; Kurt, O. Natural ZMP trajectories for biped robot reference generation. IEEE Trans. Ind. Electron. 2009, 56, 835–845. [Google Scholar] [CrossRef]
- Lee, B.-J.; Stonier, D.; Kim, Y.-D.; Yoo, J.-K.; Kim, J.-H. Modifiable walking pattern of a humanoid robot by using allowable ZMP variation. IEEE Trans. Robot. 2008, 24, 917–925. [Google Scholar]
- Hong, Y.-D.; Lee, B.-J.; Kim, J.-H. Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots. IEEE/ASME Trans. Mechatron. 2011, 16, 783–789. [Google Scholar] [CrossRef]
- Hong, Y.-D.; Kim, J.-H. 3-D command state-based modifiable bipedal walking on uneven terrain. IEEE/ASME Trans. Mechatron. 2013, 18, 657–663. [Google Scholar] [CrossRef]
- Kajita, S.; Kanehiro, F.; Kaneko, K.; Fujiwara, K.; Harada, K.; Yokoi, K.; Hirukawa, H. Biped walking pattern generation by using preview control of zero-moment point. In Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 14–19 September 2003; pp. 14–19. [Google Scholar]
- Kajita, S.; Morisawa, M.; Harada, K.; Kaneko, K.; Kanehiro, F.; Fujiwara, K.; Hirukawa, H. Biped walking pattern generation allowing auxiliary ZMP control. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 2993–2999. [Google Scholar]
- Wieber, P.-B. Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In Proceedings of the 2006 6th IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, 4–6 December 2006; pp. 137–142. [Google Scholar]
- Pratt, J.; Carff, J.; Drakunov, S.; Goswami, A. Capture point: A step toward humanoid push recovery. In Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, 4–6 December 2006; pp. 200–207. [Google Scholar]
- Takenaka, T.; Matsumoto, T.; Yoshiike, T. Real time motion generation and control for biped robot -1st report: Walking gait pattern generation-. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 1084–1091. [Google Scholar]
- Englsberger, J.; Ott, C.; Roa, M.A.; Albu-Schäffer, A.; Hirzinger, G. Bipedal walking control based on capture point dynamics. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 4420–4427. [Google Scholar]
- Englsberger, J.; Ott, C. Integration of vertical COM motion and angular momentum in an extended capture point tracking controller for bipedal walking. In Proceedings of the 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), Osaka, Japan, 29 November–1 December 2012; pp. 183–189. [Google Scholar]
- Seyde, T.; Shrivastava, A.; Englsberger, J.; Bertrand, S.; Pratt, J.; Griffin, R.J. Inclusion of angular momentum during planning for capture point based walking. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1791–1798. [Google Scholar]
- Englsberger, J.; Ott, C.; Albu-Schäffer, A. Three-dimensional bipedal walking control based on divergent component of motion. IEEE Trans. Robot. 2015, 31, 355–368. [Google Scholar] [CrossRef]
- Chestnutt, J.; Nishiwaki, K.; Kuffner, J.; Kagami, S. An adaptive action model for legged navigation planning. In Proceedings of the 2007 7th IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, PA, USA, 29 November–1 December 2007; pp. 196–202. [Google Scholar]
- Karkowski, P.; Oßwald, S.; Bennewitz, M. Real-time footstep planning in 3D environments. In Proceedings of the IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016; pp. 69–74. [Google Scholar]
- Michel, O. Cyberbotics Ltd. WebotsTM: Professional mobile robot simulation. Int. J. Adv. Robot. Syst. 2004, 1, 39–42. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.-D. Capture Point-Based Controller Using Real-Time Zero Moment Point Manipulation for Stable Bipedal Walking in Human Environment. Sensors 2019, 19, 3407. https://doi.org/10.3390/s19153407
Hong Y-D. Capture Point-Based Controller Using Real-Time Zero Moment Point Manipulation for Stable Bipedal Walking in Human Environment. Sensors. 2019; 19(15):3407. https://doi.org/10.3390/s19153407
Chicago/Turabian StyleHong, Young-Dae. 2019. "Capture Point-Based Controller Using Real-Time Zero Moment Point Manipulation for Stable Bipedal Walking in Human Environment" Sensors 19, no. 15: 3407. https://doi.org/10.3390/s19153407
APA StyleHong, Y. -D. (2019). Capture Point-Based Controller Using Real-Time Zero Moment Point Manipulation for Stable Bipedal Walking in Human Environment. Sensors, 19(15), 3407. https://doi.org/10.3390/s19153407