Transparent Film-Type Vibrotactile Actuator Array and Its Haptic Rendering Using Beat Phenomenon
Abstract
:1. Introduction
2. Transparent Film-Type Actuator Array
3. Haptic Rendering Based on the Beat Phenomenon
3.1. Preprocessing Procedure
3.2. Determining the Beat Frequency
3.3. Determining the Carrier Frequency and Amplitude
4. Experiments and Results
4.1. Experimental Environment
4.2. Experimental Results
4.3. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, J.; Liang, M.; Fang, Y.; Qiu, T.; Zhang, J.; Zhi, L. Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 2012, 24, 2874–2878. [Google Scholar] [CrossRef]
- Kim, D.J.; Kim, H.J.; Seo, K.W.; Kim, K.H.; Kim, T.W.; Kim, H.K. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels. Sci. Rep. 2015, 5, 16838. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Chen, D.; Shen, G. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 2015, 44, 161–192. [Google Scholar] [CrossRef]
- Li, Q.; Ardebili, H. Flexible thin-film battery based on solid-like ionic liquid–polymer electrolyte. J. Power Sources 2016, 303, 17–21. [Google Scholar] [CrossRef]
- Kammoun, M.; Berg, S.; Ardebili, H. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale 2015, 7, 17516–17522. [Google Scholar] [CrossRef]
- Gutman, J.; Rasor, G.E. Variable Frequency Vibratory Alert Method and Structure. U.S. Patent 5 436 622, 25 July 1995. [Google Scholar]
- Kweon, S.D.; Park, I.O.; Son, Y.H.; Choi, J.; Oh, H.Y. Linear vibration motor using resonance frequency. U.S. Patent 7 358 633 B2, 25 August 2005. [Google Scholar]
- Poupyrev, I.; Maruyama, S.; Rekimoto, J. Ambient touch: Designing tactile interfaces for handheld devices. In Proceedings of the 15th Annual ACM Symposium on User Interface Software and Technology, Paris, France, 27–30 October 2002. [Google Scholar]
- Wagner, M.; Roosen, A.; Oostra, H.; Höppener, R.; Moya, M.D. Novel low voltage piezoactuators for high displacements. J. Electroceram. 2005, 14, 231–238. [Google Scholar] [CrossRef]
- Brunetto, P.; Fortuna, L.; Graziani, S.; Strazzeri, S. A model of ionic polymer-metal composite actuators in underwater operations. Smart Mater. Struct. 2008, 17, 025029. [Google Scholar] [CrossRef]
- Lee, H.K.; Choi, N.J.; Jung, S.; Park, K.H.; Jung, H.; Shim, J.K.; Ryu, J.W.; Kim, J. Electroactive polymer actuator for lens-drive unit in auto-focus compact camera module. ETRI J. 2009, 31, 695–702. [Google Scholar] [CrossRef]
- Keplinger, C.; Sun, J.Y.; Foo, C.C.; Rothemund, P.; Whitesides, G.M.; Suo, Z. Stretchable, transparent, ionic conductors. Science 2013, 341, 945–987. [Google Scholar] [CrossRef]
- Kim, U.; Kang, J.; Lee, C.; Kwon, H.Y.; Hwang, S.; Moon, H.; Koo, J.C.; Nam, J.D.; Hong, B.H.; Choi, J.B.; et al. A transparent and stretchable graphene-based actuator for tactile display. Nanotechnology 2013, 24, 145501. [Google Scholar] [CrossRef]
- Lee, H.S.; Phung, H.; Lee, D.H.; Kim, U.K.; Nguyen, C.T.; Moon, H.; Koo, J.C.; Nam, J.D.; Choi, H.R. Design analysis and fabrication of arrayed tactile display based on dielectric elastomer actuator. Sens. Actuator A Phys. 2014, 205, 191–198. [Google Scholar] [CrossRef]
- Ganet, F.; Le, M.Q.; Capsal, J.F.; Gérard, J.F.; Pruvost, S.; Duchet, J.; Livi, S.; Lermusiaux, P.; Millon, A.; Cottinet, P.J. Haptic feedback using an all-organic electroactive polymer composite. Sens. Actuator B Chem. 2015, 220, 1120–1130. [Google Scholar] [CrossRef]
- Phung, H.; Nguyen, C.T.; Nguyen, T.D.; Lee, C.; Kim, U.; Lee, D.; Nam, J.D.; Moon, H.; Koo, J.C.; Choi, H.R. Tactile display with rigid coupling based on soft actuator. Meccanica 2015, 50, 2825–2837. [Google Scholar] [CrossRef]
- Ozsecen, M.Y.; Sivak, M.; Mavroidis, C. Haptic interfaces using dielectric electroactive polymers. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010, San Diego, CA, USA, 1 April 2010. [Google Scholar]
- Yang, T.H.; Choi, I.M.; Woo, S.Y.; Park, W.H.; Kim, S.Y.; Kim, M.S.; Song, H.W.; Park, Y.K. Design of flexible hybrid tactile display using electro-vibration and electroactive polymer modules. In Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird, UT, USA, 16–18 September 2013. [Google Scholar]
- Mun, S.; Yun, S.; Nam, S.; Park, S.K.; Park, S.; Park, B.J.; Lim, J.M.; Kyung, K.U. Electro-active polymer based soft tactile interface for wearable devices. IEEE Trans. Haptics 2018, 11, 15–21. [Google Scholar] [CrossRef]
- Pyo, D.; Ryu, S.; Kyung, K.U.; Yun, S.; Kwon, D.S. High-pressure endurable flexible tactile actuator based on microstructured dielectric elastomer. Appl. Phys. Lett. 2018, 112, 061902. [Google Scholar] [CrossRef] [Green Version]
- Sharapov, V.; Sotula, Z.; Kunickaya, L. Methods of Low-Frequency Acoustic Vibrations Creation. In Piezo-Electric Electro-Acoustic Transducers; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Réhman, S.; Liu, L. iFeeling: Vibrotactile Rendering of Human Emotions on Mobile Phones. In Proceedings of the Workshop of Mobile Multmedia Processing (WMMP), Tampa, FL, USA, 7 December 2008. [Google Scholar]
- Kim, S.Y.; Kim, K.Y.; Soh, B.S.; Yang, G.; Kim, S.R. Vibrotactile rendering for simulating virtual environment in a mobile game. IEEE Trans. Consum. Electron. 2006, 52, 1340–1347. [Google Scholar] [CrossRef]
- Park, G.; Choi, S.; Hwang, K.; Kim, S.; Sa, J.; Joung, M. Tactile effect design and evaluation for virtual buttons on a mobile device touchscreen. In Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, Stockholm, Sweden, 30 August–2 September 2011; pp. 11–20. [Google Scholar]
- Allerkamp, D.; Böttcher, G.; Wolter, F.E.; Brady, A.C.; Qu, J.; Summers, I.R. A vibrotactile approach to tactile rendering. Vis. Comput. 2007, 23, 97–108. [Google Scholar] [CrossRef]
- Lovinger, A.J. Ferroelectric Polymers. Science 1983, 220, 1115–1121. [Google Scholar] [CrossRef]
- Poulsen, M.; Ducharme, S. Why ferroelectric polyvinylidene fluoride is special. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1028–1035. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, M.S.; Larrea, A.; Goncalves, R.; Alejo, T.; Vilas, J.L.; Sebastian, V.; Martins, P.; Lanceros-Mendez, S. Understanding nucleation of the electroactive β-phase of poly (vinylidene flouride) by nanostructures. RSC Adv. 2016, 6, 113007–113015. [Google Scholar] [CrossRef]
- Sencadas, V.; Gregorio, R., Jr.; Lanceros-méndez, S. α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. J. Macromol. Sci. Part B Phys. 2009, 48, 514–525. [Google Scholar] [CrossRef]
- Mohammadi, B.; Yousefi, A.A.; Bellah, S.M. Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym. Test. 2007, 26, 42–50. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, J.; Kwon, D.S. Area-Contact haptic simulation. In Proceedings of the International Symposium on Surgery Simulation and Soft Tissue Modeling, Juan-les-Pins, France, 12–13 June 2003. [Google Scholar]
- Park, M.; Bok, B.G.; Ahn, J.H.; Kim, M.S. Recent advances in tactile sensing technology. Micromachines 2018, 9, 321. [Google Scholar] [CrossRef]
- Lederman, S.J. Skin and Touch. In Encyclopedia of Human Biology; Academic Press: San Diego, CA, USA, 1991; Volume 7, pp. 51–63. [Google Scholar]
- Lederman, S.J.; Klatzky, R.L. Haptic perception: A tutorial. Atten. Percept. Psychophys. 2009, 71, 1439–1459. [Google Scholar] [CrossRef] [Green Version]
- Johansson, R.S.; Landström, U.; Lundström, R. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Res. 1982, 244, 17–25. [Google Scholar] [CrossRef]
1st Vibration | 2nd Vibration | Expectation | |
---|---|---|---|
set 1 | 100 Hz | 100 Hz | “Same” |
set 2 | 100 Hz | 105 Hz | “Different” |
set 3 | 105 Hz | 100 Hz | “Different” |
set 4 | 105 Hz | 105 Hz | “Same” |
Presented | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
Response | “Same” | 75 | 80 | 71 | 68 |
“Different” | 25 | 20 | 29 | 32 |
1st Vibration | 2nd Vibration | |
---|---|---|
set 1 | 100 Hz + 100 Hz | 100 Hz + 100 Hz |
set 2 | 100 Hz + 100 Hz | 100 Hz + 105 Hz |
set 3 | 100 Hz + 105 Hz | 100 Hz + 100 Hz |
set 4 | 100 Hz + 105 Hz | 100 Hz + 105 Hz |
Presented | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
Response | “Same” | 96 | 6 | 12 | 84 |
“Different” | 4 | 94 | 88 | 16 |
Presented | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
Response | 1 | 95 | 1 | 2 | ||||
2 | 2 | 86 | 9 | 2 | 4 | 1 | ||
3 | 9 | 84 | 1 | 7 | 1 | |||
4 | 1 | 3 | 2 | 88 | 4 | 1 | 1 | |
5 | 2 | 1 | 4 | 3 | 81 | 5 | ||
6 | 1 | 2 | 3 | 91 | ||||
7 | 2 | 1 | 2 | 98 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, D.-S.; Kim, S.-Y. Transparent Film-Type Vibrotactile Actuator Array and Its Haptic Rendering Using Beat Phenomenon. Sensors 2019, 19, 3490. https://doi.org/10.3390/s19163490
Choi D-S, Kim S-Y. Transparent Film-Type Vibrotactile Actuator Array and Its Haptic Rendering Using Beat Phenomenon. Sensors. 2019; 19(16):3490. https://doi.org/10.3390/s19163490
Chicago/Turabian StyleChoi, Dong-Soo, and Sang-Youn Kim. 2019. "Transparent Film-Type Vibrotactile Actuator Array and Its Haptic Rendering Using Beat Phenomenon" Sensors 19, no. 16: 3490. https://doi.org/10.3390/s19163490
APA StyleChoi, D. -S., & Kim, S. -Y. (2019). Transparent Film-Type Vibrotactile Actuator Array and Its Haptic Rendering Using Beat Phenomenon. Sensors, 19(16), 3490. https://doi.org/10.3390/s19163490