Cuvette-Type LSPR Sensor for Highly Sensitive Detection of Melamine in Infant Formulas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Synthesis of AuNPs
2.3. Fabrication of Plasmonically Active Substrate for the LSPR Chip
2.4. Functionalization of p-NA on the Plasmonically Active Substrate
2.4.1. Effect of p-NA Concentration on the Plasmonically Active Substrate
2.4.2. Effect of p-NA Reaction Time on the Plasmonically Active Substrate
2.5. LSPR Sensing of Melamine in Distilled Water
2.6. Melamine Detection in Infant Formulas
2.7. Selective Detection of Melamine
3. Results
3.1. Fabrication of Plasmonically Active Substrate for the LSPR Chip
3.2. p-NA-Functionalization of the Plamonically Active Chip
3.3. Melamine Detection by the Cuvette-Type LSPR Sensor
3.4. Selective Detection in Melamine-Spiked Infant Formulas
4. Conclusions
Supplementary Files
Supplementary File 1Author Contributions
Funding
Conflicts of Interest
References
- Bouzembrak, Y.; Marvin, H.J.P. Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and Bayesian network modelling. Food Control 2016, 61, 180–187. [Google Scholar] [CrossRef]
- Moore, J.C.; Spink, J.; Lipp, M. Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. J. Food Sci. 2012, 77, 118–126. [Google Scholar] [CrossRef]
- Hong, E.; Lee, S.Y.; Jeong, J.Y.; Park, J.M.; Kim, B.H.; Kwon, K.; Chun, H.S. Modern analytical methods for the detection of food fraud and adulteration by food category. J. Sci. Food. Agric. 2017, 97, 3877–3896. [Google Scholar] [CrossRef]
- Ellis, D.I.; Muhamadali, H.; Haughey, S.A.; Elliott, C.T.; Goodacre, R. Point-and-shoot: Rapid quantitative detection methods for on-site food fraud analysis–moving out of the laboratory and into the food supply chain. Anal. Methods 2015, 7, 9401–9414. [Google Scholar] [CrossRef]
- Raeisossadati, M.J.; Danesh, N.M.; Borna, F.; Gholamzad, M.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Lateral flow based immunobiosensors for detection of food contaminants. Biosens. Bioelectron. 2016, 86, 235–246. [Google Scholar] [CrossRef]
- Wu, M.Y.-C.; Hsu, M.-Y.; Chen, S.-J.; Hwang, D.-K.; Yen, T.-H.; Cheng, C.-M. Point-of-Care Detection Devices for Food Safety Monitoring: Proactive Disease Prevention. Trends. Biotechnol. 2017, 35, 288–300. [Google Scholar] [CrossRef]
- Ozgul, S.; von Daake, S.; Kakehi, S.; Sereni, D.; Denissova, N.; Hanlon, C.; Huang, Y.J.; Everett, J.K.; Yin, C.; Montelione, G.T.; et al. An ELISA-Based Screening Platform for Ligand-Receptor Discovery. Methods. Enzymol. 2019, 615, 453–475. [Google Scholar]
- Chu, C.Y.; Wang, C.C. Toxicity of Melamine: The Public Health Concern. J. Environ. Sci. Health. C 2013, 31, 342–386. [Google Scholar] [CrossRef]
- Zhu, H.; Kannan, K. Melamine and cyanuric acid in foodstuffs from the United States and their implications for human exposure. Environ. Int. 2019, 130, 104950. [Google Scholar] [CrossRef]
- Ingelfinger, J.R. Melamine and the Global Implications of Food Contamination. N. Engl. J. Med. 2008, 359, 2745–2748. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety (MFDS, South Korea). Food code (No. 2019-63). 2019; p. 43. Available online: https://www.mfds.go.kr/eng/brd/m_15/view.do?seq=72242&srchFr=&srchTo=&srchWord=code&srchTp=7&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1 (accessed on 5 September 2019).
- Venkatasami, G.; Sowa, J.R. A rapid, acetonitrile-free, HPLC method for determination of melamine in infant formula. Anal. Chim. Acta 2010, 665, 227–230. [Google Scholar] [CrossRef]
- Xu, X.M.; Ren, Y.P.; Zhu, Y.; Cai, Z.X.; Han, J.L.; Huang, B.F.; Zhu, Y. Direct determination of melamine in dairy products by gas chromatography/mass spectrometry with coupled column separation. Anal. Chim. Acta 2009, 650, 39–43. [Google Scholar] [CrossRef]
- Garber, E.A.E. Detection of melamine using commercial enzyme-linked immunosorbent assay technology. J. Food Prot. 2008, 71, 590–594. [Google Scholar] [CrossRef]
- Yin, W.W.; Liu, J.T.; Zhang, T.C.; Li, W.H.; Liu, W.; Meng, M.; He, F.Y.; Wan, Y.P.; Feng, C.W.; Wang, S.L.; et al. Preparation of Monoclonal Antibody for Melamine and Development of an Indirect Competitive ELISA for Melamine Detection in Raw Milk, Milk Powder, and Animal Feeds. J. Agric. Food Chem. 2010, 58, 8152–8157. [Google Scholar] [CrossRef]
- Kuang, H.; Chen, W.; Yan, W.J.; Xu, L.G.; Zhu, Y.Y.; Liu, L.Q.; Chu, H.Q.; Peng, C.F.; Wang, L.B.; Kotov, N.A.; et al. Crown ether assembly of gold nanoparticles: Melamine sensor. Biosens. Bioelectron. 2011, 26, 2032–2037. [Google Scholar] [CrossRef]
- Kumar, N.; Seth, R.; Kumar, H. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Anal. Biochem. 2014, 456, 43–49. [Google Scholar] [CrossRef]
- Gu, C.; Lan, T.; Shi, H.; Lu, Y. Portable Detection of Melamine in Milk Using a Personal Glucose Meter Based on an in Vitro Selected Structure-Switching Aptamer. Anal. Chem. 2015, 87, 7676–7682. [Google Scholar] [CrossRef]
- Huy, B.T.; Seo, M.H.; Zhang, X.F.; Lee, Y.I. Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots. Biosens. Bioelectron. 2014, 57, 310–316. [Google Scholar]
- Chi, H.; Liu, B.H.; Guan, G.J.; Zhang, Z.P.; Han, M.Y. A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles. Analyst 2010, 135, 1070–1075. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, S.; Li, M.; Shao, Y.; Zhu, Z. Electrochemical sensor for melamine based on its copper complex. Chem. Commun. 2010, 46, 2259–2261. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Li, J. Construction of Plasmonic Nano-Biosensor-Based Devices for Point-of-Care Testing. Small Methods 2017, 1, 1700197. [Google Scholar] [CrossRef]
- Sepúlveda, B.; Angelomé, P.C.; Lechuga, L.M.; Liz-Marzán, L.M. LSPR-based nanobiosensors. Nano Today 2009, 4, 244–251. [Google Scholar] [CrossRef]
- Tokel, O.; Inci, F.; Demirci, U. Advances in Plasmonic Technologies for Point of Care Applications. Chem. Rev. 2014, 114, 5728–5752. [Google Scholar] [CrossRef] [Green Version]
- Han, C.P.; Li, H.B. Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles. Analyst 2010, 135, 583–588. [Google Scholar] [CrossRef]
- Bastús, N.; Comenge, J.; Puntes, V. Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening. Langmuir 2011, 27, 11098–11105. [Google Scholar] [CrossRef]
- Venosa, A.D.; King, D.W.; Sorial, G.A. The Baffled Flask Test for Dispersant Effectiveness: A Round Robin Evaluation of Reproducibility and Repeatability. Spill. Sci. Technol. B 2002, 7, 299–308. [Google Scholar] [CrossRef]
- Reed, G.F.; Lynn, F.; Meade, B.D. Use of Coefficient of Variation in Assessing Variability of Quantitative Assays. Clin. Diagn. Lab. Immunol. 2002, 9, 1235–1239. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.Y.; Heo, N.S.; Shukla, S.; Cho, H.-J.; Vilian, A.T.E.; Kim, J.; Lee, S.Y.; Han, Y.-K.; Yoo, S.M.; Huh, Y.S. Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat. Sci. Rep. 2017, 7, 10130. [Google Scholar] [CrossRef]
- Ai, K.L.; Liu, Y.L.; Lu, L.H. Hydrogen-Bonding Recognition-Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula. J. Am. Chem. Soc. 2009, 131, 9496–9497. [Google Scholar] [CrossRef]
- Lu, Y.; Xia, Y.Q.; Pan, M.F.; Wang, X.J.; Wang, S. Development of a Surface Plasmon Resonance Immunosensor for Detecting Melamine in Milk Products and Pet Foods. J. Agric. Food Chem. 2014, 62, 12471–12476. [Google Scholar] [CrossRef]
- Lou, T.T.; Wang, Y.Q.; Li, J.H.; Peng, H.L.; Xiong, H.; Chen, L.X. Rapid detection of melamine with 4-mercaptopyridine-modified gold nanoparticles by surface-enhanced Raman scattering. Anal. Bioanal. Chem. 2011, 401, 333–338. [Google Scholar] [CrossRef]
- Mauer, L.J.; Chernyshova, A.A.; Hiatt, A.; Deering, A.; Davis, R. Melamine Detection in Infant Formula Powder Using Near- and Mid-Infrared Spectroscopy. J. Agric. Food Chem. 2009, 57, 3974–3980. [Google Scholar] [CrossRef]
Method | Comment | Receptor | LOD | Linear Range | Reference |
---|---|---|---|---|---|
Colorimetry (AuNPs) | Simple, sensitive, low cost, on-site applicability | 1-(2-mercaptoethyl)-1,3,5-triazinane-2,4,6-trione (MTT) | 2.5 ppb | [31] | |
Colorimetry (AgNPs) | p-nitroaniline (pNA) | 0.1 ppm | [26] | ||
HPLC | Complex, expensive, time-consuming, and sensitive | 0.1 ppm | 1.0–80 ppm | [12] | |
SPR | MEL-Ab | 1.4 ppb | 1.4–172 ppb | [32] | |
SERS | 4-mercaptopyridine (MPY) | 0.1 ppb | 0.5–100 ppb | [33] | |
FTIR/NIR | Low sensitivity | 1 ppm | [34] | ||
LSPR | Simple, high sensitivity, low cost, and on-site applicability | p-NA | 0.01 ppb | 0.01 ppb–1000 ppb | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.Y.; Lee, M.J.; Heo, N.S.; Kim, S.; Oh, J.S.; Lee, Y.; Jeon, E.J.; Moon, H.; Kim, H.S.; Park, T.J.; et al. Cuvette-Type LSPR Sensor for Highly Sensitive Detection of Melamine in Infant Formulas. Sensors 2019, 19, 3839. https://doi.org/10.3390/s19183839
Oh SY, Lee MJ, Heo NS, Kim S, Oh JS, Lee Y, Jeon EJ, Moon H, Kim HS, Park TJ, et al. Cuvette-Type LSPR Sensor for Highly Sensitive Detection of Melamine in Infant Formulas. Sensors. 2019; 19(18):3839. https://doi.org/10.3390/s19183839
Chicago/Turabian StyleOh, Seo Yeong, Min Ji Lee, Nam Su Heo, Suji Kim, Jeong Su Oh, Yuseon Lee, Eun Jeong Jeon, Hyungsil Moon, Hyung Soo Kim, Tae Jung Park, and et al. 2019. "Cuvette-Type LSPR Sensor for Highly Sensitive Detection of Melamine in Infant Formulas" Sensors 19, no. 18: 3839. https://doi.org/10.3390/s19183839
APA StyleOh, S. Y., Lee, M. J., Heo, N. S., Kim, S., Oh, J. S., Lee, Y., Jeon, E. J., Moon, H., Kim, H. S., Park, T. J., Moon, G., Chun, H. S., & Huh, Y. S. (2019). Cuvette-Type LSPR Sensor for Highly Sensitive Detection of Melamine in Infant Formulas. Sensors, 19(18), 3839. https://doi.org/10.3390/s19183839