Metasurfaces for Advanced Sensing and Diagnostics
Abstract
:1. Introduction
- control simultaneously all the MetaSurface properties: amplitude, phase and bandwidth;
- exploiting electromagnetic characteristics, typically considered detrimental for other devices (such as near-field, narrow bandwidth, and so on) to develop MetaSurface structures with high selectivity and sensibility;
- use them for advance sensing and diagnostics platforms.
2. Materials and Methods: A Generic Tool to Realize Arbitrary Shape Metasurfaces
- Modeling: link the propagation properties of the impinging electromagnetic wave (electric (E) and magnetic (H) components) with the structure impedance distribution Z(r).
- Design: obtain the relation between the Impedance Z(r) and the MetaSurfaces physical properties: inclusions dimensions (length l, width w, gap g, and thickness t), substrate thickness d, and spatial periodicity Λ.
3. Results and Discussion
- Refractive index measurements: the sensor, without any material has a specific resonant frequency. Once the material to study is placed in contact, the overall device is illuminated by an electromagnetic wave. The sample properties are revealed by changes in the resonant characteristics such as wavelength position, magnitude and bandwidth.
- Absorption measurements: the sensor is placed not in direct contact with the biological sample. In this configuration, the electromagnetic absorption phenomena of the sample play a crucial role. The absorption measurement is revealed by the changes in the transmission coefficient magnitude and bandwidth, while the resonant wavelength position doesn’t change.
3.1. Cavity/Resonator Modes for Molecule Detection
3.2. Wave-Guide Modes for Biosensing
3.3. Surface-Waves for Advanced Medical Diagnostics
4. Conclusions
Conflicts of Interest
References
- Scheller, F.; Schubert, F. Techniques and instrumentation in analytical chemistry. In Biosensors; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA; Tokyo, Japan, 1992. [Google Scholar]
- Spichiger-Keller, U.E. Chemical Sensors and Biosensors for Medical and Biological Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Mobley, J.; Vo-Dinh, T. Optical properties of tissue. Biomed. Photonics Handb. 2003, 2, 1–2. [Google Scholar]
- Qi, Z.-M.; Matsuda, N.; Itoh, K.; Murabayashi, M.; Lavers, C. A design for improving the sensitivity of a mach–zehnder interferometer to chemical and biological measurands. Sens. Actuators B Chem. 2002, 81, 254–258. [Google Scholar] [CrossRef]
- Dell’Olio, F.; Passaro, V.M. Optical sensing by optimized silicon slot waveguides. Opt. Express 2007, 15, 4977–4993. [Google Scholar] [CrossRef] [PubMed]
- Larsson, E.M.; Alegret, J.; Käll, M.; Sutherland, D.S. Sensing characteristics of nir localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007, 7, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, A.; Popat, K.C.; Aldridge, J.C.; Desai, T.A.; Hryniewicz, J.; Chbouki, N.; Little, B.E.; King, O.; Van, V.; Chu, S. Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quant. Electron. 2006, 12, 148–155. [Google Scholar] [CrossRef] [Green Version]
- La Spada, L.; McManus, T.M.; Dyke, A.; Haq, S.; Zhang, L.; Cheng, Q.; Hao, Y. Surface wave cloak from graded refractive index nanocomposites. Sci. Rep. 2016, 6, 22045–22322. [Google Scholar] [CrossRef] [PubMed]
- La Spada, L.; Tarparelli, R.; Vegni, L. Spectral Green’s function for SPR meta-structures. Mater. Sci. Forum 2014, 792, 110–114. [Google Scholar]
- Yotter, R.A.; Wilson, D.M. Sensor technologies for monitoring metabolic activity in single cells-part ii: Nonoptical methods and applications. IEEE Sens. J. 2004, 4, 412–429. [Google Scholar] [CrossRef]
- Yen, T.-J.; Padilla, W.J.; Fang, N.; Vier, D.C.; Smith, D.R.; Pendry, J.B.; Basov, D.N.; Zhang, X. Terahertz magnetic response from artificial materials. Science 2004, 303, 1494–1496. [Google Scholar] [CrossRef]
- Padilla, W.J.; Taylor, A.J.; Highstrete, C.; Lee, M.; Averitt, R.D. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 2006, 96, 107401. [Google Scholar] [CrossRef]
- Chen, H.-T. Active Terahertz Metamaterials; Optical Society of America: Washington, DC, USA, 2009. [Google Scholar]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Holloway, C.L.; Dienstfrey, A.; Kuester, E.F.; O’Hara, J.F.; Azad, A.K.; Taylor, A.J. A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials. Metamaterials 2009, 3, 100–112. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Dienstfrey, A. Characterizing metasurfaces/metafilms: The connection between surface susceptibilities and effective material properties. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1507–1511. [Google Scholar] [CrossRef]
- Engheta, N.; Ziolkowski, R.W. Metamaterials: Physics and Engineering Explorations; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139. [Google Scholar] [CrossRef] [PubMed]
- Holloway, C.L.; Kabos, P.; Mohamed, M.A.; Kuester, E.F.; Gordon, J.A.; Janezic, M.D.; Baker-Jarvis, J. Realisation of a controllable metafilm/metasurface composed of resonant magnetodielectric particles: Measurements and theory. IET Microw. Antennas Propag. 2010, 4, 1111–1122. [Google Scholar] [CrossRef]
- Holloway, C.L.; Love, D.C.; Kuester, E.F.; Salandrino, A.; Engheta, N. Sub-wavelength resonators: On the use of metafilms to overcome the λ size limit. IET Microw. Antennas Propag. 2008, 2, 120–129. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Novotny, D. Waveguides composed of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 525–529. [Google Scholar] [CrossRef]
- Gordon, J.A.; Holloway, C.L.; Dienstfrey, A. A physical explanation of angle-independent reflection and transmission properties of metafilms/metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1127–1130. [Google Scholar] [CrossRef]
- Li, A.; Singh, S.; Sievenpiper, D. Metasurfaces and their applications. Nanophotonics 2018, 7, 989–1011. [Google Scholar] [CrossRef]
- Maci, S.; Minatti, G.; Casaletti, M.; Bosiljevac, M. Metasurfing: Addressing waves on impenetrable metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1499–1502. [Google Scholar] [CrossRef]
- Pozar, D.M.; Targonski, S.D.; Syrigos, H.D. Design of millimeter wave microstrip reflectarrays. IEEE Trans. Antennas Propag. 1997, 45, 287–296. [Google Scholar] [CrossRef]
- Chen, H.-T.; Padilla, W.J.; Zide, J.M.; Gossard, A.C.; Taylor, A.J.; Averitt, R.D. Active terahertz metamaterial devices. Nature 2006, 444, 597. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Yun, S.; Lin, L.; Bossard, J.A.; Werner, D.H.; Mayer, T.S. Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength inclusions. Sci. Rep. 2013, 3, 1571. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 1210713. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; He, Q.; Xiao, S.; Xu, Q.; Li, X.; Zhou, L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 2012, 11, 426. [Google Scholar] [CrossRef]
- La Spada, L.; Haq, S.; Hao, Y. Modeling and design for electromagnetic surface wave devices. Radio Sci. 2017, 52, 1049–1057. [Google Scholar] [CrossRef] [Green Version]
- Shaltout, A.M.; Kim, J.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Ultrathin and multicolour optical cavities with embedded metasurfaces. Nat. Commu. 2018, 9, 2673. [Google Scholar] [CrossRef] [PubMed]
- Neshev, D.; Aharonovich, I. Optical metasurfaces: New generation building blocks for multi-functional optics. Light: Sci. Appl. 2018, 7, 58. [Google Scholar]
- Ni, X.; Emani, N.K.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Broadband light bending with plasmonic nanoantennas. Science 2012, 335, 427. [Google Scholar] [CrossRef]
- Yu, N.; Aieta, F.; Genevet, P.; Kats, M.A.; Gaburro, Z.; Capasso, F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 2012, 12, 6328–6333. [Google Scholar] [CrossRef]
- Monticone, F.; Estakhri, N.M.; Alù, A. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 2013, 110, 203903. [Google Scholar] [CrossRef] [PubMed]
- Eisenhart, L.P. Separable systems in euclidean 3-space. Phys. Rev. 1934, 45, 427. [Google Scholar] [CrossRef]
- Balanis, C.A. Advanced Engineering Electromagnetics; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Gay-Balmaz, P.; Martin, O.J.F. Electromagnetic resonances in individual and coupled split-ring resonators. J. Appl. Phys. 2002, 92, 2929–2936. [Google Scholar] [CrossRef] [Green Version]
- Qin, F.; Ding, L.; Zhang, L.; Monticone, F.; Chum, C.C.; Deng, J.; Mei, S.; Li, Y.; Teng, J.; Hong, M. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci. Adv. 2016, 2, e1501168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury Sajid, M.; Wang, D.; Chaudhuri, K.; DeVault, C.; Kildishev Alexander, V.; Boltasseva, A.; Shalaev Vladimir, M. Material platforms for optical metasurfaces. Nanophotonics 2018, 7, 959–987. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- La Spada, L.; Bilotti, F.; Vegni, L. Metamaterial-based sensor design working in infrared frequency range. Prog. Electromagn. Res. 2011, 34, 205–223. [Google Scholar] [CrossRef]
- Bueno, M.A.; Assis, A.K.T. A new method for inductance calculations. J. Phys. D Appl. Phys. 1995, 28, 1802. [Google Scholar] [CrossRef]
- La Spada, L.; Vegni, L. Metamaterial-based wideband electromagnetic wave absorber. Opt. Express 2016, 24, 5763–5772. [Google Scholar] [CrossRef]
- Iovine, R.; La Spada, L.; Vegni, L. Nanoparticle device for biomedical and optoelectronics applications. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2013, 32, 1596–1608. [Google Scholar] [CrossRef]
- La Spada, L.; Bilotti, F.; Vegni, L. Metamaterial Biosensor for Cancer Detection. In Proceedings of the conference on Sensors 2011 IEEE, Limerick, Ireland, 28–31 October 2011; pp. 627–630. [Google Scholar]
- La Spada, L. Electromagnetic Modeling of Metamaterial-Based Sensors. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), London, UK, 8–10 December 2014; pp. 1–3. [Google Scholar]
- La Spada, L.; Iovine, R.; Vegni, L. Electromagnetic modeling of ellipsoidal nanoparticles for sensing applications. Opt. Eng. 2013, 52, 051205. [Google Scholar] [CrossRef]
- Sun, S.; Yang, K.-Y.; Wang, C.-M.; Juan, T.-K.; Chen, W.T.; Liao, C.Y.; He, Q.; Xiao, S.; Kung, W.-T.; Guo, G.-Y. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 2012, 12, 6223–6229. [Google Scholar] [CrossRef] [PubMed]
- Delgado, V.; Sydoruk, O.; Tatartschuk, E.; Marqués, R.; Freire, M.J.; Jelinek, L. Analytical circuit model for split ring resonators in the far infrared and optical frequency range. Metamaterials 2009, 3, 57–62. [Google Scholar] [CrossRef]
- La Spada, L.; Bilotti, F.; Vegni, L. Sensor Design for Cancer Tissue Diagnostics. Proc. SPIE 2012, 84271V. [Google Scholar] [CrossRef]
- Osborne, I.S. Metasurfaces for Molecular Detection; American Association for the Advancement of Science: Washington, DC, USA, 2018. [Google Scholar]
- Altug, H.; Yesilkoy, F.; Li, X.; Soler, M.; Belushkin, A.; Jahani, Y.; Terborg, R.; Pello, J.; Pruneri, V. Photonic Metasurfaces for Next-Generation Biosensors; Optical Society of America: Washington, DC, USA, 2018. [Google Scholar]
- Yan, L.; Wu, P.C.; Zhu, W.; Song, Q.; Zhang, W.; Tsai, D.P.; Capasso, F.; Liu, A.Q. Microfluidic Metasurface with High Tunability for Multifunction: Dispersion Compensation and Beam Tracking; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Iovine, R.; La Spada, L.; Vegni, L. Optical properties of modified nanorod particles for biomedical sensing. IEEE Trans. Magn. 2014, 50, 169–172. [Google Scholar] [CrossRef]
- Tao, H.; Chieffo, L.R.; Brenckle, M.A.; Siebert, S.M.; Liu, M.; Strikwerda, A.C.; Fan, K.; Kaplan, D.L.; Zhang, X.; Averitt, R.D. Metamaterials on paper as a sensing platform. Adv. Mater. 2011, 23, 3197–3201. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-R.; Ahn, K.J.; Han, S.; Bahk, Y.-M.; Park, N.; Kim, D.-S. Colossal absorption of molecules inside single terahertz nanoantennas. Nano Lett. 2013, 13, 1782–1786. [Google Scholar] [CrossRef]
- Kabashin, A.V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G.A.; Atkinson, R.; Pollard, R.; Podolskiy, V.A.; Zayats, A.V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867. [Google Scholar] [CrossRef]
- Park, S.; Son, B.; Choi, S.; Kim, H.; Ahn, Y. Sensitive detection of yeast using terahertz slot antennas. Opt. Express 2014, 22, 30467–30472. [Google Scholar] [CrossRef]
- Park, S.; Jun, S.; Kim, A.; Ahn, Y. Terahertz metamaterial sensing on polystyrene microbeads: Shape dependence. Opt. Mater. Express 2015, 5, 2150–2155. [Google Scholar] [CrossRef]
- Park, S.; Hong, J.; Choi, S.; Kim, H.; Park, W.; Han, S.; Park, J.; Lee, S.; Kim, D.; Ahn, Y. Detection of microorganisms using terahertz metamaterials. Sci. Rep. 2014, 4, 4988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, H.-M.; Remais, J.; Fung, M.-C.; Xu, L.; Sun, S.S.-M. Food supply and food safety issues in china. Lancet 2013, 381, 2044–2053. [Google Scholar] [CrossRef]
- Kagan, C.R. At the Nexus of Food Security and Safety: Opportunities for Nanoscience and Nanotechnology. ACS Nano 2016, 10, 2985–2986. [Google Scholar] [CrossRef]
- Feng, Y.-Z.; Sun, D.-W. Application of hyperspectral imaging in food safety inspection and control: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 1039–1058. [Google Scholar] [CrossRef]
- Xie, L.; Gao, W.; Shu, J.; Ying, Y.; Kono, J. Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics. Sci. Rep. 2015, 5, 8671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Xie, L.; Ying, Y. A high-sensitivity terahertz spectroscopy technology for tetracycline hydrochloride detection using metamaterials. Food Chem. 2016, 211, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Sabarinathan, J. Effects of coherent interactions on the sensing characteristics of near-infrared gold nanorings. J. Phys. Chem. C 2010, 114, 15243–15250. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Zhu, J.; Wang, W.; Ye, Z.; Ma, Y.; Tsai, C.-Y.; Chen, S.; Ying, Y. Terahertz sensing of chlorpyrifos-methyl using metamaterials. Food Chem. 2017, 218, 330–334. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Zhao, Y.; Hu, F.; Chen, T.; Du, Y.; Xin, H. Split ring resonators: Using the redshift of terahertz responses peak to identify transgenic products with similar spectral characteristics. Opt. Quant. Electron. 2015, 47, 1819–1828. [Google Scholar] [CrossRef]
- Williams, C.R.; Andrews, S.R.; Maier, S.; Fernández-Domínguez, A.; Martín-Moreno, L.; García-Vidal, F. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat. Photonics 2008, 2, 175. [Google Scholar] [CrossRef]
- Ng, B.; Hanham, S.M.; Wu, J.; Fernández-Domínguez, A.I.; Klein, N.; Liew, Y.F.; Breese, M.B.; Hong, M.; Maier, S.A. Broadband terahertz sensing on spoof plasmon surfaces. Acs Photonics 2014, 1, 1059–1067. [Google Scholar] [CrossRef]
- La Spada, L.; Iovine, R.; Vegni, L. Nanoparticle electromagnetic properties for sensing applications. Adv. Nanopart. 2012, 1, 9. [Google Scholar] [CrossRef]
- You, B.; Lu, J.-Y.; Liu, T.-A.; Peng, J.-L. Hybrid terahertz plasmonic waveguide for sensing applications. Opt. Express 2013, 21, 21087–21096. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S. The dielectric properties of biological tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.; Schepps, J. Dielectric properties of tumor and normal tissues at radio through microwave frequencies. J. Microw. Power 1981, 16, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Kiricuta, I., Jr.; Demco, D.; Simplaceanu, V. State of water in normal and tumor tissues. Archiv Geschwulstforsch. 1973, 42, 226. [Google Scholar]
- Sun, Y.; Xia, X.; Feng, H.; Yang, H.; Gu, C.; Wang, L. Modulated terahertz responses of split ring resonators by nanometer thick liquid layers. Appl. Phys. Lett. 2008, 92, 221101. [Google Scholar] [CrossRef]
- Iovine, R.; La Spada, L.; Vegni, L. Nanoplasmonic Sensor for Chemical Measurements. Proc. SPIE 2013, 877411. [Google Scholar] [CrossRef]
- Wiernik, P.H.; Dutcher, J.P.; Gertz, M.A. Neoplastic Diseases of the Blood; Springer: Berlin, Germany, 2018. [Google Scholar]
- Hofmann, M.; Fersch, T.; Weigel, R.; Fischer, G.; Kissinger, D. A Novel Approach to Non-Invasive Blood Glucose Measurement Based on rf Transmission. In Proceedings of the 2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA), Bari, Italy, 30–31 May 2011; pp. 39–42. [Google Scholar]
- La Spada, L.; Iovine, R.; Tarparelli, R.; Vegni, L. Conical nanoparticles for blood disease detection. Adv. Nanopart. 2013, 2, 259. [Google Scholar] [CrossRef]
- Iovine, R.; La Spada, L.; Vegni, L. Modified bow-tie nanoparticles operating in the visible and near infrared frequency regime. Adv. Nanopart. 2013, 2, 21. [Google Scholar] [CrossRef]
- Wu, X.; Quan, B.; Pan, X.; Xu, X.; Lu, X.; Gu, C.; Wang, L. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specificbiosensor. Biosens. Bioelectron. 2013, 42, 626–631. [Google Scholar] [CrossRef] [PubMed]
- La Spada, L.; Iovine, R.; Tarparelli, R.; Vegni, L. Metamaterial-Based Sensor for Skin Disease Diagnostics. Proc. SPIE 2013, 87670T. [Google Scholar] [CrossRef]
- Miyamaru, F.; Hattori, K.; Shiraga, K.; Kawashima, S.; Suga, S.; Nishida, T.; Takeda, M.; Ogawa, Y. Highly sensitive terahertz sensing of glycerol-water mixtures with metamaterials. J. Infrared Millim. Terahertz Waves 2014, 35, 198–207. [Google Scholar] [CrossRef]
- Liberal, I.; Li, Y.; Engheta, N. Reconfigurable epsilon-near-zero metasurfaces via photonic doping. Nanophotonics 2018, 7, 1117–1127. [Google Scholar] [CrossRef]
- Hu, X.; Xu, G.; Wen, L.; Wang, H.; Zhao, Y.; Zhang, Y.; Cumming, D.R.; Chen, Q. Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photonics Rev. 2016, 10, 962–969. [Google Scholar] [CrossRef] [Green Version]
- Tarparelli, R.; Iovine, R.; La Spada, L.; Vegni, L. Surface plasmon resonance of nanoshell particles with pmma-graphene core. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2014, 33, 2016–2029. [Google Scholar] [CrossRef]
- La Spada, L.; Vegni, L. Electromagnetic nanoparticles for sensing and medical diagnostic applications. Materials 2018, 11, 603. [Google Scholar] [CrossRef]
- You, B.; Chen, C.-Y.; Yu, C.-P.; Liu, T.-A.; Hattori, T.; Lu, J.-Y. Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection. Opt. Express 2017, 25, 8571–8583. [Google Scholar] [CrossRef]
- Yao, H.; Zhong, S. High-mode spoof spp of periodic metal grooves for ultra-sensitive terahertz sensing. Opt. Express 2014, 22, 25149–25160. [Google Scholar] [CrossRef]
- Yao, H.; Zhong, S.; Tu, W. Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing. J. Appl. Phys. 2015, 117, 133104. [Google Scholar] [CrossRef] [Green Version]
- Ng, B.; Wu, J.; Hanham, S.M.; Fernández-Domínguez, A.I.; Klein, N.; Liew, Y.F.; Breese, M.B.; Hong, M.; Maier, S.A. Spoof plasmon surfaces: A novel platform for thz sensing. Adv. Opt. Mater. 2013, 1, 543–548. [Google Scholar] [CrossRef]
- McManus, T.; La Spada, L.; Hao, Y. Isotropic and anisotropic surface wave cloaking techniques. J. Opt. 2016, 18, 044005. [Google Scholar] [CrossRef] [Green Version]
- Salomatina, E.V.; Jiang, B.; Novak, J.; Yaroslavsky, A.N. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J. Biomed. Opt. 2006, 11, 064026. [Google Scholar] [CrossRef]
- La Spada, L.; Bilotti, F.; Vegni, L. Metamaterial Resonator Arrays for Organic and Inorganic Compound Sensing. Proc. SPIE 2011, 83060I. [Google Scholar] [CrossRef]
- Nenninger, G.G.; Piliarik, M.; Homola, J. Data analysis for optical sensors based on spectroscopy of surface plasmons. Meas. Sci. Technol. 2002, 13, 2038. [Google Scholar] [CrossRef]
- La Spada, L.; Iovine, R.; Vegni, L. Metamaterial-Based Sensor for Hemoglobin Measurements. In Proceedings of the Antennas and Propagation Conference (LAPC), Loughborough, UK, 2–13 November 2012; pp. 1–4. [Google Scholar]
- Zhang, C.; Liang, L.; Ding, L.; Jin, B.; Hou, Y.; Li, C.; Jiang, L.; Liu, W.; Hu, W.; Lu, Y. Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor. Appl. Phys. Lett. 2016, 108, 241105. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Weiss, T.; Mesch, M.; Langguth, L.; Eigenthaler, U.; Hirscher, M.; Sonnichsen, C.; Giessen, H. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 2009, 10, 1103–1107. [Google Scholar] [CrossRef]
- Markelz, A.; Whitmire, S.; Hillebrecht, J.; Birge, R. Thz time domain spectroscopy of biomolecular conformational modes. Phys. Med. Biol. 2002, 47, 3797. [Google Scholar] [CrossRef]
- Fischer, B.; Walther, M.; Jepsen, P.U. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys. Med. Biol. 2002, 47, 3807. [Google Scholar] [CrossRef]
- Yoshida, H.; Ogawa, Y.; Kawai, Y.; Hayashi, S.; Hayashi, A.; Otani, C.; Kato, E.; Miyamaru, F.; Kawase, K. Terahertz sensing method for protein detection using a thin metallic mesh. Appl. Phys. Lett. 2007, 91, 253901. [Google Scholar] [CrossRef]
- Kim, D.; Choi, W.; Choi, Y.; Dagli, N. Triangular resonator based on surface plasmon resonance of attenuated reflection mirror. Electron. Lett. 2007, 43, 1365–1367. [Google Scholar] [CrossRef]
- Bingham, C.M.; Tao, H.; Liu, X.; Averitt, R.D.; Zhang, X.; Padilla, W.J. Planar wallpaper group metamaterials for novel terahertz applications. Opt. Express 2008, 16, 18565–18575. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.S.; Dao, T.D.; Dang, L.H.; Vu, L.D.; Ohi, A.; Nabatame, T.; Lee, Y.; Nagao, T.; Hoang, C.V. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules. Sci. Rep. 2016, 6, 32123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasebe, T.; Yamada, Y.; Tabata, H. Label-free thz sensing of living body-related molecular binding using a metallic mesh. Biochem. Biophys. Res. Commun. 2011, 414, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Hasebe, T.; Kawabe, S.; Matsui, H.; Tabata, H. Metallic mesh-based terahertz biosensing of single-and double-stranded DNA. J. Appl. Phys. 2012, 112, 094702. [Google Scholar] [CrossRef]
- Wu, X.; Quan, B.; Pan, X.; Xu, X.; Lu, X.; Xia, X.; Li, J.; Gu, C.; Wang, L. Sensing self-assembled alkanethiols by differential transmission interrogation with terahertz metamaterials. Appl. Opt. 2013, 52, 4877–4883. [Google Scholar] [CrossRef] [PubMed]
- Homola, J.; Lu, H.B.; Yee, S.S. Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer. Electron. Lett. 1999, 35, 1105–1106. [Google Scholar] [CrossRef]
Equivalent Circuit Model Elements | ||
---|---|---|
Impedance | Series | |
Parallel | ||
Capacitance Ctot | Gap capacitance Cg [44] | |
Fringing capacitance Cf [45] | ||
Surface capacitance Cs [46] | ||
Inductance Ltot | Self-inductance Lself [47] | |
Mutual inductance M [48] |
Equivalent Circuit Model Elements for the Thickness Effect | |
---|---|
Substrate Capacitance Xc(εsub) [42] | |
Additional Capacitance Cadd [50] | |
Additional Inductance Ladd [50] |
The Mutual Impedance Zmutual | |
---|---|
Mutual inductance ZM | |
Mutual capacitance ZC |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Spada, L. Metasurfaces for Advanced Sensing and Diagnostics. Sensors 2019, 19, 355. https://doi.org/10.3390/s19020355
La Spada L. Metasurfaces for Advanced Sensing and Diagnostics. Sensors. 2019; 19(2):355. https://doi.org/10.3390/s19020355
Chicago/Turabian StyleLa Spada, Luigi. 2019. "Metasurfaces for Advanced Sensing and Diagnostics" Sensors 19, no. 2: 355. https://doi.org/10.3390/s19020355
APA StyleLa Spada, L. (2019). Metasurfaces for Advanced Sensing and Diagnostics. Sensors, 19(2), 355. https://doi.org/10.3390/s19020355