Coupling Single-Drop Microextraction with SERS: A Demonstration Using p-MBA on Gold Nanohole Array Substrate
Abstract
:Highlights:
- -
- Gold nanoholes array substrate (AuNHAS) prepared by interference lithography is a reproducible substrate for surface-enhanced Raman scattering (SERS) analysis.
- -
- AuNHAS was applied as SERS substrate to detect low concentration of p-MBA.
- -
- Single-drop micro-extraction (SDME) is a pre-concentration technique for low concentration analyte.
- -
- Coupling SDME with SERS made possible the detection of para-mercaptobenzoic acid (p-MBA) at nanomolar concentration.
1. Introduction
2. Materials and Methods
2.1. Preparation of Gold Nanohole Array Substrates
2.2. SERS Measurements
2.3. Single-Drop Microextraction of Para-Mercaptobenzoic Acid
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schlucker, S. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795. [Google Scholar] [CrossRef] [PubMed]
- Lane, L.A.; Qian, X.; Nie, S. SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chem. Rev. 2015, 115, 10489–10529. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Etchegoin, P.G. Single-Molecule Surface-Enhanced Raman Spectroscopy. Annu. Rev. Phys. Chem. 2012, 63, 65–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, F.; Galvan, D.D.; Jain, P.; Yu, Q. Multi-functional, thiophenol-based surface chemistry for surface-enhanced Raman spectroscopy. Chem. Commun. 2017, 53, 4550–4561. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Andrade, G.F.S.; Brolo, A.G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Khlebtsov, B.N.; Khanadeev, V.A.; Panfilova, E.V.; Bratashov, D.N.; Khlebtsov, N.G. Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides. ACS Appl. Mater. Interfaces 2015, 7, 6518–6529. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Chirumamilla, M.; Toma, A.; Gopalakrishnan, A.; Zaccaria, R.P.; Alabastri, A.; Leoncini, M.; Fabrizio, E.D. Plasmon based biosensor for distinguishing different peptides mutation states. Sci. Rep. 2013, 3, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Wang, Z.; Yang, Y.; Chen, L.; Syed, A.; Wong, K.; Wang, X. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. J. Micromech. Microeng. 2012, 22, 125007–125015. [Google Scholar] [CrossRef]
- Valsecchi, C.; Armas, L.E.G.; Menezes, J.W. Large Area Nanohole Arrays for Sensing Fabricated by Interference Lithography. Sensors 2019, 19, 2182. [Google Scholar] [CrossRef] [PubMed]
- Alothman, Z.A.; Dawod, M.; Kim, J.; Chung, D.S. Single-drop microextraction as a powerful pretreatment tool for capillary electrophoresis: A review. Anal. Chim. Acta 2012, 739, 14–24. [Google Scholar] [CrossRef]
- Tolessa, T.; Than, Z.; Yin, Y.; Liu, J. Single-drop gold nanoparticles for headspace microextraction and colorimetric assay of mercury (II) in environmental waters. Talanta 2018, 176, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Habibi, A.; Jahanshahi, N. Determination of cyclamate in artificial sweeteners and beverages using headspace single-drop microextraction and gas chromatography flame-ionization detection. Food. Chem. 2011, 124, 1258–1263. [Google Scholar] [CrossRef]
- Shahvar, A.; Saraji, M.; Shamsaei, D. Headspace single drop microextraction combined with mobile phone-based on-drop sensing for the determination of formaldehyde. Sens. Actuators B Chem. 2018, 273, 1474–1478. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, Y.; Liang, Q.; Fang, C.; Wang, C. Application of headspace single-drop microextraction coupled with gas chromatography for the determination of short-chain fatty acids in RuO4 oxidation products of asphaltenes. J. Chromatogr. A 2010, 1217, 3561–3566. [Google Scholar] [CrossRef] [PubMed]
- Alahyari, E.; Setareh, M.; Shekari, A.; Roozbehani, G.; Soltaninejad, K. Analysis of opioids in postmortem urine samples by dispersive liquid-liquid microextraction and high performance liquid chromatography with photo diode array detection. Egypt. J. Forensic Sci. 2018, 8, 13–19. [Google Scholar] [CrossRef]
- Kim, J.; Choi, K.; Chung, D.S. In-line coupling of single-drop microextraction with capillary electrophoresis-mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 8745–8752. [Google Scholar] [CrossRef]
- Saleh, T.A.; Al-Shalalfeh, M.M.; Al-Saadi, A.A. Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface- enhanced Raman scattering with computational assignment. Sci. Rep. 2016, 6, 32185–32196. [Google Scholar] [CrossRef]
- Quilis, N.G.; Lequeux, M.; Venugopalan, P.; Khan, I.; Knoll, W.; Boujday, S.; de la Chapelle, M.L.; Dostalek, J. Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS. Nanoscale 2018, 10, 10268–10272. [Google Scholar] [CrossRef]
- Wu, W.; Liu, L.; Dai, Z.; Liu, J.; Yang, S.; Zhou, L.; Xiao, X.; Jiang, C.; Roy, V.A. Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals. Sci. Rep. 2015, 5, 10208–10217. [Google Scholar] [CrossRef]
- Jain, A.; Verma, K.K. Recent advances in applications of single-drop microextraction: A review. Anal. Chim. Acta 2011, 706, 37–65. [Google Scholar] [CrossRef]
- Smith, G.; Girardon, J.-S.; Paul, J.-F.; Berrier, E. Dynamics of a plasmon-activated p-mercaptobenzoic acid layer deposited over Au nanoparticles using time-resolved SERS. Phys. Chem. Chem. Phys. 2016, 18, 19567–19573. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Lv, J.; Sun, S.; Song, X.; Yang, Z. Copper-templated synthesis of gold microcages for sensitive surface-enhanced Raman scattering activity. RSC Adv. 2014, 4, 27074. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, E.B.; Valsecchi, C.; Gonçalves, J.L.S.; Ávila, L.F.; Menezes, J.W. Coupling Single-Drop Microextraction with SERS: A Demonstration Using p-MBA on Gold Nanohole Array Substrate. Sensors 2019, 19, 4394. https://doi.org/10.3390/s19204394
Santos EB, Valsecchi C, Gonçalves JLS, Ávila LF, Menezes JW. Coupling Single-Drop Microextraction with SERS: A Demonstration Using p-MBA on Gold Nanohole Array Substrate. Sensors. 2019; 19(20):4394. https://doi.org/10.3390/s19204394
Chicago/Turabian StyleSantos, Elias B., Chiara Valsecchi, Jaderson L. S. Gonçalves, Luis F. Ávila, and Jacson W. Menezes. 2019. "Coupling Single-Drop Microextraction with SERS: A Demonstration Using p-MBA on Gold Nanohole Array Substrate" Sensors 19, no. 20: 4394. https://doi.org/10.3390/s19204394
APA StyleSantos, E. B., Valsecchi, C., Gonçalves, J. L. S., Ávila, L. F., & Menezes, J. W. (2019). Coupling Single-Drop Microextraction with SERS: A Demonstration Using p-MBA on Gold Nanohole Array Substrate. Sensors, 19(20), 4394. https://doi.org/10.3390/s19204394