Towards a System for Tracking Drug Delivery Using Frequency Excited Gold Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Analysis of AuNPs
2.2. RF Heating System
2.3. EIT Imaging System
3. Results and Discussion
3.1. RF Heating Data of Stuck of AuNPs
3.2. EIT Imaging with AuNPs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 2008, 60, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Dreaden, E.C.; Austin, L.A.; MacKey, M.A.; El-Sayed, M.A. Size matters: Gold nanoparticles in targeted cancer drug delivery. Ther. Deliv. 2012, 3, 457–478. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A. Electrical Impedance Tomography: Tissue Properties to Image Measures. IEEE Trans. Biom. Eng. 2017, 64, 2494–2504. [Google Scholar]
- Zhang, A.; Tu, Y.; Qin, S.; Li, Y.; Zhou, J.; Chen, N.; Lu, Q.; Zhang, B. Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging. J. Colloid Interface Sci. 2012, 372, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, X. Gold nanoparticles for photoacoustic imaging. Nanomedicine 2015, 10, 299–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordebo, S.; Dalarsson, M.; Ivanenko, Y.; Sjöberg, D.; Bayford, R. On the physical limitations for radio frequency absorption in gold nanoparticle suspensions. J. Phys. D Appl. Phys. 2017, 50, 155401. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, H.J.; Chen, X.; Alfadhl, Y.; Yu, J.; Wen, D. Radiofrequency heating of nanomaterials for cancer treatment: Progress, controversies, and future development. Appl. Phys. Rev. 2015, 2, 1–14. [Google Scholar] [CrossRef]
- Gannon, C.J.; Patra, C.R.; Bhattacharya, R.; Mukherjee, P.; Curley, S.A. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. 2008, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mironava, T.; Arachchilage, V.T.; Myers, K.J.; Suchalkin, S. Gold Nanoparticles and Radio Frequency Field Interactions: Effects of Nanoparticle Size, Charge, Aggregation, Radio Frequency, and Ionic Background. Langmuir 2017, 33, 13114–13124. [Google Scholar] [CrossRef] [PubMed]
- Pantano, P.; Harrison, C.D.; Poulose, J.; Urrabazo, D., Jr.; Norman, T.Q.; Braun, E.I.; Draper, R.K.; Overzet, L.J. Factors affecting the 13.56-MHz radio-frequency-mediated heating of gold nanoparticles. Appl. Spectrosc. Rev. 2017, 52, 821–836. [Google Scholar] [CrossRef]
- Collins, C.B.; McCoy, R.S.; Ackerson, B.J.; Collins, G.J.; Ackerson, C.J. Radiofrequency heating pathways for gold nanoparticles. Nanoscale 2014, 6, 8459–8472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaghan, M.F.; Lund, T.; Hashemzadeh, P.; Roitt, I.M.; Bayford, R.H. An investigation of the impedance properties of gold nanoparticles. J. Phys. Conf. Ser. 2010, 224, 012058. [Google Scholar] [CrossRef]
- Du, B.; Jiang, X.; Das, A.; Zhou, Q.; Yu, M.; Jin, R.; Zheng, J. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 2017, 12, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Sassaroli, E.; Li, K.C.P.; O’Neill, B.E. Radio frequency absorption in gold nanoparticle suspensions: A phenomenological study. J. Phys. D. Appl. Phys. 2012, 45, 075303. [Google Scholar] [CrossRef]
- Kanwar, J.R. Cancer nanotechnology. J. Cancer Sci. Ther. 2012, 4, 359–373. [Google Scholar] [CrossRef]
- Sigmaaldrich. Available online: https://www.sigmaaldrich.com/united-kingdom.html (accessed on 9 October 2019).
- Clinescientific. 2019. Available online: http://www.clinescientific.com/ (accessed on 9 October 2019).
- Sokal, N.O. Class-E RF power amplifiers. Qex 2001, 204, 9–20. [Google Scholar]
- Schormans, M.; Valente, V.; Demosthenous, A. Practical Inductive Link Design for Biomedical Wireless Power Transfer: A Tutorial. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1112–1130. [Google Scholar] [CrossRef] [Green Version]
- Swisstom AG-Pioneer-Set. Available online: http://www.swisstom.com/en/products/pioneer-set (accessed on 9 April 2019).
- Swisstom, A.G. EIT Pioneer Set. 2013. Available online: http://www.swisstom.com/wp-content/uploads/SenTec-EITPioneerSet-ProductInformation-1ST500-102Rev007 (accessed on 30 October 2019).
- Adler, A. EIDORS: Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software. Available online: http://eidors3d.sourceforge.net/ (accessed on 30 October 2019).
- LumaSense. LUXTRON 812 Industrial Temperature Monitor. Available online: https://www.environmental-expert.com/products/lumasense-model-luxtron-812-two-channel-fiber-optic-thermometer-for-industrial-applications-609913 (accessed on 30 October 2019).
- AdvanceEnergy. Luxtron Fiber Optic Thermometry Probes & Accessories. Available online: https://www.lumasenseinc.com/EN/products/temperature-measurement/luxtron-fiber-optic-temperature-sensors/fot-probes/luxtron-probes-accessories.html (accessed on 30 October 2019).
- Adler, A.; Arnold, J.H.; Bayford, R.; Borsic, A.; Brown, B.; Dixon, P.; Faes, T.J.; Frerichs, I.; Gagnon, H.; Gärber, Y.; et al. GREIT: A unified approach to 2D linear EIT reconstruction of lung images. Physiol. Meas. 2009, 30, S35–S54. [Google Scholar] [CrossRef] [PubMed]
Component Name | Component Value |
---|---|
VDD | 8 V |
L1 | 270 µ |
C1 | 390 p |
C2 | 330 p |
L2 | 680 n |
L3 | 0.1 µ |
L4 | 470 µ |
C3 | 2.2 n |
C4 | 57 p |
L5 | 2.41 µ |
r | 0.03 m |
n | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neshatvar, N.; Damaso, R.; Seifnaraghi, N.; Demosthenous, A.; Bayford, R. Towards a System for Tracking Drug Delivery Using Frequency Excited Gold Nanoparticles. Sensors 2019, 19, 4750. https://doi.org/10.3390/s19214750
Neshatvar N, Damaso R, Seifnaraghi N, Demosthenous A, Bayford R. Towards a System for Tracking Drug Delivery Using Frequency Excited Gold Nanoparticles. Sensors. 2019; 19(21):4750. https://doi.org/10.3390/s19214750
Chicago/Turabian StyleNeshatvar, Nazanin, Rui Damaso, Nima Seifnaraghi, Andreas Demosthenous, and Richard Bayford. 2019. "Towards a System for Tracking Drug Delivery Using Frequency Excited Gold Nanoparticles" Sensors 19, no. 21: 4750. https://doi.org/10.3390/s19214750
APA StyleNeshatvar, N., Damaso, R., Seifnaraghi, N., Demosthenous, A., & Bayford, R. (2019). Towards a System for Tracking Drug Delivery Using Frequency Excited Gold Nanoparticles. Sensors, 19(21), 4750. https://doi.org/10.3390/s19214750