A MIMO-SAR Tomography Algorithm Based on Fully-Polarimetric Data
Abstract
:1. Introduction
2. Polarization Signal Model
3. Tomography Algorithm
4. Simulation
4.1. Case 1: Two Point Scatterers with a Spacing of 0.18 m
4.2. Case 2: Two Point Scatterers with a Spacing of 0.06 m
4.3. Case 3: Four Point Scatterers with a Spacing of 0.09 m
5. Experiment
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.; Stoica, P. MIMO radar with collocated antennas. IEEE Signal Process. Mag. 2007, 24, 106–114. [Google Scholar] [CrossRef]
- Haimovich, A.M.; Blum, R.S.; Cimini, L.J. MIMO radar with widely separated antennas. IEEE Signal Process. Mag. 2008, 25, 116–129. [Google Scholar] [CrossRef]
- Ma, Y.; Miao, C.; Zhao, Y.Y.; Wu, W. An MIMO Radar System Based on the Sparse-Array and Its Frequency Migration Calibration Method. Sensors 2019, 19, 3580. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, R.M.; Gebhardt, E.T.; Broderick, S.P. Through-Wall Single and Multiple Target Imaging Using MIMO Radar. Electronics 2017, 6, 70. [Google Scholar] [CrossRef]
- Zhao, D.Z.; Jin, T.; Dai, Y.P.; Song, Y.P.; Su, X.C. A Three-Dimensional Enhanced Imaging Method on Human Body for Ultra-Wideband Multiple-Input Multiple-Output Radar. Electronics 2018, 7, 101. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, R.; Jiang, G.; Zhao, L.; Cheng, B. A Precise Wavenumber Domain Algorithm for Near Range Microwave Imaging by Cross MIMO Array. IEEE Trans. Microw. Theory Technol. 2019, 67, 1316–1326. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Xu, X.J.; Xu, G.Y. MIMO radar calibration and imagery for near-field target scattering diagnosis. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 442–452. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, X.; Bamler, R. Nonlocal Compressive Sensing-Based SAR Tomography. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3015–3024. [Google Scholar] [CrossRef] [Green Version]
- Fornaro, G.; Pauciullo, A.; Reale, D.; Verde, S. Multilook SAR Tomography for 3-D Reconstruction and Monitoring of Single Structures Applied to COSMO-SKYMED Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2776–2785. [Google Scholar] [CrossRef]
- Aguilera, E.; Nannini, M.; Reigber, A. Multisignal Compressed Sensing for Polarimetric SAR Tomography. IEEE Geosci. Remote Sens. Lett. 2012, 9, 871–875. [Google Scholar] [CrossRef]
- Muhammad, A.S.; Tazio, S.; Irena, H.; Othmar, F. A Case Study on the Correction of Atmospheric Phases for SAR Tomography in Mountainous Regions. IEEE Trans. Geosci. Remote Sens. 2019, 57, 18–35. [Google Scholar]
- Zhu, X.X.; Montazeri, S.; Gisinger, C.; Hanssen, R.F.; Bamler, R. Geodetic SAR Tomography. IEEE Trans. Geosci. Remote Sens. 2016, 54, 18–35. [Google Scholar] [CrossRef]
- Xing, S.Q.; Li, Y.Z.; Dai, D.H.; Wang, X.S. Three-Dimensional Reconstruction of Man-MadeObjects Using Polarimetric Tomographic SAR. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3694–3705. [Google Scholar] [CrossRef]
- Liang, L.; Guo, H.D.; Li, X.W. Three-Dimensional Structural Parameter Inversion of Buildings by Distributed Compressive Sensing-Based Polarimetric SAR Tomography Using a Small Number of Baselines. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4218–4230. [Google Scholar] [CrossRef]
- Aghababaee, H.; Ferraioli, G.; Schirinzi, G.; Pascazio, V. Regularization of SAR Tomography for 3-D Height Reconstruction in Urban Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 648–659. [Google Scholar] [CrossRef]
- Li, X.W.; Liang, L.; Guo, H.; Huang, Y. Compressive Sensing for Multibaseline Polarimetric SAR Tomography of Forested Areas. IEEE Trans. Geosci. Remote Sens. 2016, 54, 153–166. [Google Scholar] [CrossRef]
- Nannini, M.; Scheiber, R.; Horn, R.; Moreira, A. First 3-D Reconstructions of Targets Hidden Beneath Foliage by Means of Polarimetric SAR Tomography. IEEE Geosci. Remote Sens. Lett. 2012, 9, 60–64. [Google Scholar] [CrossRef]
- Yang, J.G.; Jin, T.; Xiao, C.; Huang, X.T. Compressed Sensing Radar Imaging: Fundamentals, Challenges, and Advances. Sensors 2019, 19, 3100. [Google Scholar] [CrossRef]
- Fornaro, G.; Lombardini, F.; Serafino, F. Three-Dimensional Multipass SAR Focusing Experiments with Long-Term Spaceborne Data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 702–714. [Google Scholar] [CrossRef]
- Pesavento, M.; Gershman, A.B.; Haardt, M. Unitary Root-MUSIC with a Real-Valued Eigendecomposition: A Theoretical and Experimental Performance Study. IEEE Trans. Signal Process. 2000, 48, 1306–1314. [Google Scholar] [CrossRef]
- Linebarger, D.A.; DeGroat, R.D.; Dowling, E.M. Efficient direction-finding methods employing forward–backward averaging. IEEE Trans. Signal Process. 1994, 42, 2136–2145. [Google Scholar] [CrossRef]
Cylinder (–0.09 m) | 90° Rotated Dihedral Reflector (0.09 m) | |||
---|---|---|---|---|
Fully-polarimetric DCS | Height | −0.091 m | 0.091 m | |
Scattering intensity | HH | −1.8 dB | 0 dB | |
HV | −18.5 dB | −39.6 dB | ||
VH | −18.5 dB | −36.5 dB | ||
VV | −1.8 dB | 0 dB | ||
Fully-polarimetric UMUSIC | Height | −0.090 m | 0.090 m | |
Scattering intensity | HH | −1.8 dB | 0 dB | |
HV | −18.5 dB | −39.1 dB | ||
VH | −18.5 dB | −36.2 dB | ||
VV | −1.8 dB | 0 dB |
Cylinder (−0.06 m) | 90° Rotated Dihedral Reflector (0 m) | |||
---|---|---|---|---|
Fully-polarimetric DCS | Height | −0.062 m | 0.004 m | |
Scattering intensity | HH | −3.0 dB | −1.6 dB | |
HV | −17.6 dB | −29.5 dB | ||
VH | −17.6 dB | −37.5 dB | ||
VV | −3.2 dB | 0 dB | ||
Fully-polarimetric UMUSIC | Height | −0.060 m | 0.004 m | |
Scattering intensity | HH | −2.9 dB | −0.7 dB | |
HV | −17.6 dB | −28.7 dB | ||
VH | −17.6 dB | −36.4 dB | ||
VV | −3.1 dB | 0 dB |
Parameters | Cylinder | 67.5° Rotated Dihedral Reflector | 90° Rotated Dihedral Reflector | Plate |
---|---|---|---|---|
HH | −1 | 1 | −1 | |
HV | 0 | 0 | 0 | |
VH | 0 | 0 | 0 | |
VV | −1 | − | −1 | −1 |
Cylinder (−0.13 m) | 67.5° Rotated Dihedral Reflector (−0.04 m) | 90° Rotated Dihedral Reflector (0.05 m) | Plate (0.14 m) | |||
---|---|---|---|---|---|---|
Fully-polarimetric DCS | Height | −0.141 m | −0.030 m | 0.041 m | 0.141 m | |
Scattering intensity | HH | −2.4 dB | −2.5 dB | −2.4 dB | −2.2 dB | |
HV | −16.2 dB | −1.6 dB | −24.5 dB | −15.1 dB | ||
VH | −16.2 dB | −1.6 dB | −24.1 dB | −15.1 dB | ||
VV | −1.2 dB | −2.4 dB | −2.5 dB | 0 dB | ||
Fully-polarimetric UMUSIC | Height | −0.131 m | −0.039 m | 0.057 m | 0.140 m | |
Scattering intensity | HH | −0.3 dB | 0 dB | −1.7 dB | −0.5 dB | |
HV | −14.6 dB | −2.4 dB | −36.8 dB | −15.1 dB | ||
VH | −14.6 dB | −2.4 dB | −37.2 dB | −15.1 dB | ||
VV | −0.3 dB | −4.0 dB | −3.0 dB | 0 dB |
Down Range | −0.4 m | −0.3 m | −0.2 m | −0.1 m | 0 m | 0.1 m | 0.2 m |
---|---|---|---|---|---|---|---|
Components | Aircraft head | Front wheel | Inlet | M1 head | M1 tail+ M2 head | M2 tail+ Rear wheel | M3 tail |
HH | x | x | x | x | x | x | x |
HV | x | x | x | ||||
VH | x | x | x | x | |||
VV | x | x | x | x | x | x | x |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, L.; Xu, X. A MIMO-SAR Tomography Algorithm Based on Fully-Polarimetric Data. Sensors 2019, 19, 4839. https://doi.org/10.3390/s19224839
Kong L, Xu X. A MIMO-SAR Tomography Algorithm Based on Fully-Polarimetric Data. Sensors. 2019; 19(22):4839. https://doi.org/10.3390/s19224839
Chicago/Turabian StyleKong, Lingyu, and Xiaojian Xu. 2019. "A MIMO-SAR Tomography Algorithm Based on Fully-Polarimetric Data" Sensors 19, no. 22: 4839. https://doi.org/10.3390/s19224839
APA StyleKong, L., & Xu, X. (2019). A MIMO-SAR Tomography Algorithm Based on Fully-Polarimetric Data. Sensors, 19(22), 4839. https://doi.org/10.3390/s19224839