DNA-Polylactide Modified Biosensor for Electrochemical Determination of the DNA-Drugs and Aptamer-Aflatoxin M1 Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. Surface Layer Assembly
2.4. Biosensor Signal Measurements
3. Results and Discussion
3.1. Surface Layer Characterization
3.2. Phenothiazine Dye Signals
3.3. Doxorubicin Determination
3.4. Aflatoxin M1 Determination
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Palchaudhuri, R.; Hergenrother, P.J. DNA as a target for anticancer compounds: Methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol. 2007, 18, 497–503. [Google Scholar] [CrossRef]
- Henderson, P.T.; Boone, E.; Schuster, G.B. Bulged guanine is uniquely sensitive to damage caused by visible-light irradiation of ethidium bound to DNA: A possible role in mutagenesis. Helv. Chim. Acta 2002, 85, 135–151. [Google Scholar] [CrossRef]
- Lerman, L.S. Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 1961, 3, 18–30. [Google Scholar] [CrossRef]
- Oikawa, S.; Kurasaki, M.; Kojima, Y.; Kawanishi, S. Oxidative and nonoxidative mechanisms of site-specific DNA cleavage induced by copper-containing metallothioneins. Biochemistry 1995, 34, 8763–8770. [Google Scholar] [CrossRef] [PubMed]
- Hurley, L.H. DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer 2002, 2, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Sirajuddin, M.; Ali, S.; Badshah, A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltammetry. J. Photochem. Photobiol. B 2013, 124, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-M.; Chen, C.K.-M.; Hou, M.-H. Conformational changes in DNA upon ligand binding monitored by circular dichroism. Int. J. Mol. Sci. 2012, 13, 3394–3413. [Google Scholar] [CrossRef] [PubMed]
- Misiak, M.; Mantegazza, F.; Beretta, G.L. Methods for elucidation of DNA-anticancer drug interactions and their applications in the development of new drugs. Curr. Pharm. Des. 2016, 22, 6596–6611. [Google Scholar] [CrossRef]
- Drummond, T.G.; Hill, M.G.; Barton, J.K. Electrochemical DNA sensors. Nat. Biotechnol. 2003, 21, 1192–1199. [Google Scholar] [CrossRef]
- Vacek, J.; Havran, L.; Fojta, M. Ex situ voltammetry and chronopotentiometry of doxorubicin at a pyrolytic graphite electrode: Redox and catalytic properties and analytical applications. Electroanalysis 2009, 21, 2139–2144. [Google Scholar] [CrossRef]
- Zabost, E.; Liwinska, W.; Karbarz, M.; Kurek, E.; Lyp, M.; Donten, M.; Stojek, Z. Electrochemical examination of ability of dsDNA/PAM composites for storing and releasing of doxorubicin. Bioelectrochemistry 2016, 109, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Paziewska-Nowak, A.; Jankowska-Śliwińska, J.; Dawgul, M.; Pijanowska, D.G. Selective electrochemical detection of pirarubicin by means of DNA-modified graphite biosensor. Electroanalysis 2017, 29, 1810–1819. [Google Scholar] [CrossRef]
- Altay, C.; Eksin, E.; Congur, G.; Erdem, A. Electrochemical monitoring of the interaction between Temozolamide and nucleic acids by using disposable pencil graphite electrodes. Talanta 2015, 144, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Erdem, A.; Congur, G. Impedimetric detection of in situ interaction between anti-cancer drug bleomycin and DNA. Int. J. Biol. Macromol. 2013, 61, 295–301. [Google Scholar] [CrossRef]
- Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Faghih-Mirzaei, E. A nanostructure label-free DNA biosensor for ciprofloxacin analysis as a chemotherapeutic agent: An experimental and theoretical investigation. New J. Chem. 2017, 41, 4985–4989. [Google Scholar] [CrossRef]
- Satyanarayana, M.; Goud, K.Y.; Reddy, K.K.; Gobi, K.V. Conducting polymer-layered carbon nanotube as sensor interface for electrochemical detection of dacarbazine in vitro. Electrocatalysis 2017, 8, 214–223. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, X.; Li, Y.; Su, Z.; Jandt, K.D.; Wei, G. Protein-mimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog. Polym. Sci. 2018, 80, 94–124. [Google Scholar] [CrossRef]
- Wei, G.; Su, Z.; Reynolds, N.P.; Arosio, P.; Hamley, I.W.; Gazitf, E.; Mezzenga, R. Self-assembling peptide and protein amyloids: From structure to tailored function in nanotechnology. Chem. Soc. Rev. 2017, 46, 4661–4708. [Google Scholar] [CrossRef]
- Adhikari, B.; Majumdar, S. Polymers in sensor applications. Prog. Polym. Sci. 2004, 29, 699–766. [Google Scholar] [CrossRef]
- Song, H.; Zhang, X.; Liu, Y.; Su, Z. Developing graphene-based nanohybrids for electrochemical sensing. Chem. Rec. 2019, 19, 534–549. [Google Scholar] [CrossRef]
- Wang, M.; Duan, X.; Xu, Y.; Duan, X. Functional three-dimensional graphene/polymer composites. ACS Nano 2016, 10, 7231–7247. [Google Scholar] [CrossRef] [PubMed]
- Nan, C.; Zhang, Y.; Zhang, G.; Dong, C.; Shuang, S.; Choi, M.M.F. Activation of nylon net and its application to a biosensor for determination of glucose in human serum. Enzym. Microb. Technol. 2009, 44, 249–253. [Google Scholar] [CrossRef]
- Velusamy, V.; Palanisamy, S.; Chen, S.-M.; Chen, T.-W.; Selvam, S.; Ramaraj, K.; Lou, B.-S. Graphene dispersed cellulose microfibers composite for efficient immobilization of hemoglobin and selective biosensor for detection of hydrogen peroxide. Sens. Actuators B 2017, 252, 175–182. [Google Scholar] [CrossRef]
- Fraga, A.R.L.; Quintana, J.C.; Destri, G.L.; Giamblanco, N.; Toro, R.G.; Punzo, F. Polymeric membranes conditioning for sensors applications: Mechanism and influence on analytes detection. J. Solid State Electrochem. 2012, 16, 901–909. [Google Scholar] [CrossRef]
- Yang, X.; Kirsch, J.; Olsen, E.V.; Fergus, J.W.; Simonian, A.L. Anti-fouling PEDOT:PSS modification on glassy carbon electrodes for continuous monitoring of tricresyl phosphate. Sens. Actuators B 2013, 177, 659–667. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, H.; Zheng, J.; Wang, X.; Gu, Z.; Chen, C. Highly sensitive recognition of cancer cells by electrochemical biosensor based on the interface of gold nanoparticles/polylactide nanocomposites. J. Electroanal. Chem. 2011, 656, 174–178. [Google Scholar] [CrossRef]
- Nordin, N.; Yusof, N.A.; Abdullah, J.; Radu, S.; Hushiarian, R. Sensitive detection of multiple pathogens using a single DNA probe. Biosens. Bioelectron. 2016, 86, 398–405. [Google Scholar] [CrossRef]
- Wu, X.; Qiu, J.; Zhang, W.; Zang, L.; Sakai, E.; Liu, P. Synthesizing multi-walled carbon nanotube-polymethyl methacrylate conductive composites and poly(lactic acid) based composites. Polym. Compos. 2016, 37, 503–511. [Google Scholar] [CrossRef]
- Wei, X.-P.; Luo, T.-L.; Xu, F.; Chen, Y.-S. Sensitive conductive polymer composites based on polylactic acid filled with multiwalled carbon nanotubes for chemical vapor sensing. Synth. Met. 2016, 215, 216–222. [Google Scholar] [CrossRef]
- Alam, J.; Alam, M.; Raja, M.; Abduljaleel, Z.; Dass, L.A. MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behavior. Int. J. Mol. Sci. 2014, 15, 19924–19937. [Google Scholar] [CrossRef]
- Zhang, F.; Xia, Y.; Wang, L.; Liu, L.; Liu, Y.; Leng, J. Conductive shape memory microfiber membranes with core–shell structures and electroactive performance. ACS Appl. Mater. Interfaces 2018, 41, 35526–35532. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cai, J.; Zhuang, X.; Guo, Z.; Jing, X.; Chen, X. pH-dependent self-assembly of amphiphilic poly(l-glutamic acid)-block-poly(lactic-co-glycolic acid) copolymers. Polymer 2010, 51, 2676–2682. [Google Scholar] [CrossRef]
- Picciani, P.H.S.; Medeiros, E.S.; Pan, Z.; Orts, W.J.; Mattoso, L.H.C.; Soares, B.G. Development of conducting polyaniline/poly(lactic acid) nanofibers by electrospinning. J. Appl. Polym. Sci. 2009, 112, 744–753. [Google Scholar] [CrossRef]
- Gorbatchuk, V.V.; Porfireva, A.V.; Stepanova, V.B.; Kuzin, Y.I.; Evtugyn, V.G.; Shamagsumova, R.V.; Stoikov, I.I.; Evtugyn, G.A. Co-polymers of oligolactic acid and tetrasubstituted thiacalix[4]arenes as a new material for electrochemical sensor development. Sens. Actuators B 2017, 246, 136–145. [Google Scholar] [CrossRef]
- Nguyen, B.H.; Tran, L.D.; Do, Q.P.; Nguyen, H.L.; Tran, N.H.; Nguyen, P.X. Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor. Mater. Sci. Eng. C 2013, 33, 2229–2234. [Google Scholar] [CrossRef]
- Stoikov, I.I.; Yushkova, E.A.; Zhukov, A.Y.; Zharov, I.; Antipin, I.S.; Konovalov, A.I. The synthesis of p-tert-butyl thiacalix[4]arenes functionalized with secondary amide groups at the lower rim and their extraction properties and self-assembly into nanoscale aggregates. Tetrahedron 2008, 64, 7112–7121. [Google Scholar] [CrossRef]
- Kuzin, Y.I.; Gorbatchuk, V.V.; Rogov, A.M.; Stoikov, I.I.; Evtugyn, G.A. Electrochemical properties of multilayered coatings implementing thiacalix[4]arenes with oligolactic fragments and DNA. Electroanalysis 2019. accepted for publication. [Google Scholar] [CrossRef]
- Rohs, R.; Sklenar, H.; Lavery, R.; Röder, B. Methylene blue binding to DNA with alternating GC base sequence: A modeling study. J. Am. Chem. Soc. 2000, 122, 2860–2866. [Google Scholar] [CrossRef]
- Rohs, R.; Sklenar, H. Methylene blue binding to DNA with alternating AT base sequence: Minor groove binding is favored over intercalation. J. Biomol. Struct. Dyn. 2004, 21, 699–711. [Google Scholar] [CrossRef]
- Erdem, A.; Kerman, K.; Meric, B.; Ozsoz, M. Methylene blue as a novel electrochemical hybridization indicator. Electroanalysis 2001, 13, 219–223. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Dong, S. Interaction of brilliant cresyl blue and methylene green with DNA studied by spectrophotometric and voltammetric methods. Electroanalysis 1996, 8, 803–807. [Google Scholar] [CrossRef]
- Campos, R.; Kékedy-Nagy, L.; She, Z.; Sodhi, R.; Kraatz, H.-B.; Ferapontova, E.E. Electron transfer in spacer-free DNA duplexes tethered to gold via dA10 tags. Langmuir 2018, 34, 8472–8479. [Google Scholar] [CrossRef] [PubMed]
- Farjami, E.; Clima, L.; Gothelf, K.V.; Ferapontova, E.E. DNA interactions with a methylene blue redox indicator depend on the DNA length and are sequence specific. Analyst 2010, 135, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Abi, A.; Ferapontova, E.E. Unmediated by DNA electron transfer in redox-labeled DNA duplexes end-tethered to gold electrodes. J. Am. Chem. Soc. 2012, 134, 4499–14507. [Google Scholar] [CrossRef] [PubMed]
- Kékedy-Nagy, L.; Shipovskov, S.; Ferapontova, E.E. Effect of a dual charge on the DNA-conjugated redox probe on DNA sensing by short hairpin beacons tethered to gold electrodes. Anal. Chem. 2016, 88, 7984–7990. [Google Scholar] [CrossRef]
- Kizek, R.; Adam, V.; Hrabet, J.; Eckschlager, T.; Smutny, S.; Burda, J.D.; Frei, E.; Stiborova, M. Anthracyclines and ellipticines as DNA-damaging anticancer drugs: Recent advances. Pharm. Ther. 2012, 133, 26–39. [Google Scholar] [CrossRef]
- Danesi, R.; Fogli, S.; Gennari, A.; Conte, P.; del Tacca, M. Pharmacokinetic-pharmacodynamic relationships of the anthracycline anticancer drugs. Clin. Pharmacokinet. 2002, 41, 431–444. [Google Scholar] [CrossRef]
- Kulikova, T.; Porfireva, A.; Evtugyn, G.; Hianik, T. Electrochemical DNA sensors with layered polyaniline—DNA coating for detection of specific DNA interactions. Sensors 2019, 19, 469. [Google Scholar] [CrossRef] [Green Version]
- Hajian, R.; Tayebi, Z.; Shams, N. Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J. Pharm. Anal. 2017, 7, 27–33. [Google Scholar] [CrossRef]
- Peng, A.; Xu, H.; Luo, C.; Ding, H. Application of a disposable doxorubicin sensor for direct determination of clinical drug concentration in patient blood. Int. J. Electrochem. Sci. 2016, 11, 6266–6278. [Google Scholar] [CrossRef]
- Evtugyn, A.; Porfireva, A.; Stepanova, V.; Budnikov, H. Electrochemical biosensors based on native DNA and nanosized mediator for the detection of anthracycline preparations. Electroanalysis 2015, 27, 629–637. [Google Scholar] [CrossRef]
- Kulikova, T.; Porfireva, A.; Evtugyn, G. Voltammetric sensor with replaceable polyaniline-DNA layer for doxorubicin determination. Electroanalysis 2018, 30, 2284–2292. [Google Scholar] [CrossRef]
- Fallah, A.A.; Jafari, T.; Fallah, A.; Rahnama, M. Determination of aflatoxin M1 levels in Iranian white and cream cheese. Food Chem. Toxicol. 2009, 47, 1872–1875. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Jinap, S.; Pirouz, A.A.; Faizal, A.R.A. Aflatoxin M1 in milk and dairy products, occurrence and recent challenges: A review. Trends Food Sci. Technol. 2015, 46, 110–119. [Google Scholar] [CrossRef]
- Andrade, P.D.; Silva, J.L.G.; Caldas, E.D. Simultaneous analysis of aflatoxins B1, B2, G1, G2, M1 and ochratoxin A in breast milk by high-performance liquid chromatography/fluorescence after liquid–liquid extraction with low temperature purification (LLE–LTP). J. Chromatogr. A 2013, 1304, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Sakin, F.; Tekeli, I.A.; Yipel, M.; Kürekci, C. Occurrence and health risk assessment of aflatoxins and ochratoxin a in Sürk, a Turkish dairy food, as studied by HPLC. Food Control 2018, 90, 317–323. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiong, S.; Zhang, K.K.; Feng, L.; Chen, X.; Wu, Y.; Huang, X.; Xiong, Y. Quantum bead-based fluorescence-linked immunosorbent assay for ultrasensitive detection of aflatoxin M1 in pasteurized milk, yogurt, and milk powder. J. Dairy Sci. 2019, 102, 3985–3993. [Google Scholar] [CrossRef]
- Dinçkaya, E.; Kınık, Ö.; Sezgintürk, M.K.; Altuğ, Ç.; Akkoca, A. Development of an impedimetric aflatoxin M1 biosensor based on a DNA probe and gold nanoparticles. Biosens. Bioelectron. 2011, 26, 3806–3811. [Google Scholar] [CrossRef]
- Smolko, V.; Shurpik, D.; Porfireva, A.; Evtugyn, G.; Stoikov, I.; Hianik, T. Electrochemical aptasensor based on poly(neutral red) and carboxylated pillar[5]arene for sensitive determination of aflatoxin M1. Electroanalysis 2018, 30, 486–496. [Google Scholar] [CrossRef]
OLA Macrocyclic Core | I, μA = a + b × log(c, M) | Concentration Range | |||
---|---|---|---|---|---|
a | b | n | R2 | ||
MG | |||||
- | 35 ± 3 | 4 ± 1 | 6 | 0.9055 | 10 μM–1.0 mM |
cone2 | 43 ± 4 | 2.0 ± 0.2 | 6 | 0.9595 | 10 μM–1.0 mM |
paco3 | 45 ± 4 | 3.2 ± 0.2 | 5 | 0.9337 | 10 μM–1.0 mM |
1,3-alt4 | 48 ± 4 | 2.3 ± 0.1 | 5 | 0.9666 | 10 μM–1.0 mM |
cone5 | 37 ± 3 | 7 ± 1 | 5 | 0.9211 | 10 μM–1.0 mM |
paco6 | 52 ± 4 | 10 ± 1 | 5 | 0.9410 | 10 μM–1.0 mM |
1,3-alt7 | 60 ± 6 | 9 ± 1 | 5 | 0.9324 | 10 μM–1.0 mM |
MB | |||||
- | 40 ± 4 | 5 ± 2 | 6 | 0.8922 | 10 μM–1.0 mM |
cone2 | 35 ± 3 | 8 ± 1 | 6 | 0.9345 | 10 μM–1.0 mM |
paco3 | 45 ± 5 | 7 ± 11 | 7 | 0.9751 | 10 μM–1.0 mM |
1,3-alt4 | 60 ± 5 | 8 ± 1 | 7 | 0.9232 | 10 μM–1.0 mM |
cone5 | 57 ± 4 | 12 ± 1 | 6 | 0.9445 | 10 μM–1.0 mM |
paco6 | 55 ± 3 | 15 ± 2 | 6 | 0.9766 | 10 μM–1.0 mM |
1,3-alt7 | 45 ± 3 | 13 ± 12 | 5 | 0.9701 | 10 μM–1.0 mM |
OLA Macrocyclic Core | Concentration Range, −log(C, M) | Slope, μA/log(C, M) | LOD, nM | n |
---|---|---|---|---|
cone5 | 9.0–10.5 | −62 ± 2 | 0.01 | 9 |
paco6 | 7.0–9.0 | −55 ± 2 | 0.05 | 7 |
1,3-alt7 | 7.0–9.5 | −50 ± 1 | 0.10 | 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanova, V.; Smolko, V.; Gorbatchuk, V.; Stoikov, I.; Evtugyn, G.; Hianik, T. DNA-Polylactide Modified Biosensor for Electrochemical Determination of the DNA-Drugs and Aptamer-Aflatoxin M1 Interactions. Sensors 2019, 19, 4962. https://doi.org/10.3390/s19224962
Stepanova V, Smolko V, Gorbatchuk V, Stoikov I, Evtugyn G, Hianik T. DNA-Polylactide Modified Biosensor for Electrochemical Determination of the DNA-Drugs and Aptamer-Aflatoxin M1 Interactions. Sensors. 2019; 19(22):4962. https://doi.org/10.3390/s19224962
Chicago/Turabian StyleStepanova, Veronika, Vladimir Smolko, Vladimir Gorbatchuk, Ivan Stoikov, Gennady Evtugyn, and Tibor Hianik. 2019. "DNA-Polylactide Modified Biosensor for Electrochemical Determination of the DNA-Drugs and Aptamer-Aflatoxin M1 Interactions" Sensors 19, no. 22: 4962. https://doi.org/10.3390/s19224962
APA StyleStepanova, V., Smolko, V., Gorbatchuk, V., Stoikov, I., Evtugyn, G., & Hianik, T. (2019). DNA-Polylactide Modified Biosensor for Electrochemical Determination of the DNA-Drugs and Aptamer-Aflatoxin M1 Interactions. Sensors, 19(22), 4962. https://doi.org/10.3390/s19224962