Efficacy of Msplit Estimation in Displacement Analysis
Abstract
:1. Introduction and Motivation
2. Theoretical Foundations
3. Empirical Analyses
3.1. Elementary Tests
3.2. Vertical Displacement Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pelzer, H. Zur Analyse Geodätischer Deformationsmessungen; Deutsche Geodätische Kommission: Munich, Germany, 1971. [Google Scholar]
- Caspary, W.F.; Haen, W.; Borutta, H. Deformation analysis by statistical methods. Technometrics 1990, 32, 49–57. [Google Scholar] [CrossRef]
- Hekimoglu, S.; Erdogan, B.; Butterworth, S. Increasing the efficacy of the conventional deformation analysis methods: Alternative strategy. J. Surv. Eng. 2010, 136, 1–8. [Google Scholar] [CrossRef]
- Niemeier, W. Statistical tests for detecting movements in repeatedly measured geodetic networks. In Developments in Geotectonics; Elsevier: Amsterdam, The Netherlands, 1981; Volume 71, pp. 335–351. [Google Scholar]
- Setan, H.; Singh, R. Deformation analysis of a geodetic monitoring network. Geomatica 2001, 55, 333–346. [Google Scholar]
- Denli, H.H.; Deniz, R. Global congruency test methods for GPS networks. J. Surv. Eng. 2003, 129, 95–98. [Google Scholar] [CrossRef]
- Chen, Y.Q. Analysis of Deformation Surveys—A Generalized Method; Technical Report; UNB Geodesy and Geomatics Engineering, University of New Brunswick: Fredericton, NB, Canada, 1983. [Google Scholar]
- Caspary, W.F.; Borutta, H. Robust estimation in deformation models. Surv. Rev. 1987, 29, 29–45. [Google Scholar] [CrossRef]
- Duchnowski, R. Median-based estimates and their application in controlling reference mark stability. J. Surv. Eng. 2010, 136, 47–52. [Google Scholar] [CrossRef]
- Duchnowski, R. Hodges–Lehmann estimates in deformation analyses. J. Geod. 2013, 87, 873–884. [Google Scholar] [CrossRef]
- Duchnowski, R.; Wiśniewski, Z. Comparison of two unconventional methods of estimation applied to determine network point displacement. Surv. Rev. 2014, 46, 401–405. [Google Scholar] [CrossRef]
- Duchnowski, R.; Wiśniewski, Z. Accuracy of the Hodges-Lehmann estimates computed by applying Monte Carlo simulations. Acta Geod. Geophys. 2017, 52, 511–525. [Google Scholar] [CrossRef]
- Duchnowski, R.; Wiśniewski, Z. Msplit and Mp estimation. A wider range of robustness. In Proceedings of the International Conference on Environmental Engineering, Vilnius, Lithuania, 27–28 April 2017; pp. 1–6. [Google Scholar]
- Wyszkowska, P.; Duchnowski, R. Subjective breakdown points of R-estimators applied in deformation analysis. In Proceedings of the International Conference on Environmental Engineering, Vilnius, Lithuania, 27–28 April 2017; pp. 1–6. [Google Scholar]
- Erdogan, B.; Hekimoglu, S. Effect of subnetwork configuration design on deformation analysis. Surv. Rev. 2014, 46, 142–148. [Google Scholar] [CrossRef]
- Nowel, K.; Kamiński, W. Robust estimation of deformation from observation differences for free control networks. J. Geod. 2014, 88, 749–764. [Google Scholar] [CrossRef]
- Nowel, K. Robust M-Estimation in analysis of control network deformations: classical and new method. J. Surv. Eng. 2015, 141, 04015002. [Google Scholar] [CrossRef]
- Amiri-Simkooei, A.R.; Alaei-Tabatabaei, S.M.; Zangeneh-Nejad, F.; Voosoghi, B. Stability analysis of deformation-monitoring network points using simultaneous observation adjustment of two epochs. J. Surv. Eng. 2017, 143, 04016020. [Google Scholar] [CrossRef]
- Wiśniewski, Z. Estimation of parameters in a split functional model of geodetic observations (Msplit estimation). J. Geod. 2009, 83, 105–120. [Google Scholar] [CrossRef]
- Wiśniewski, Z. Msplit(q) estimation: Estimation of parameters in a multi split functional model of geodetic observations. J. Geod. 2010, 84, 355–372. [Google Scholar] [CrossRef]
- Janowski, A.; Rapiński, J. M–Split Estimation in Laser Scanning Data Modeling. J Indian Soc. Remote Sens. 2013, 41, 15–19. [Google Scholar] [CrossRef]
- Duchnowski, R.; Wiśniewski, Z. Estimation of the shift between parameters of functional models of geodetic observations by applying Msplit estimation. J. Surv. Eng. 2011, 138, 1–8. [Google Scholar] [CrossRef]
- Zienkiewicz, M.H. Application of Msplit estimation to determine control points displacements in networks with unstable reference system. Surv. Rev. 2015, 47, 174–180. [Google Scholar] [CrossRef]
- Wiśniewski, Z.; Zienkiewicz, M.H. Shift- estimation in deformation analyses. J. Surv. Eng. 2016, 142, 04016015. [Google Scholar] [CrossRef]
- Velsink, H. Testing methods for adjustment models with constraints. J. Surv. Eng. 2018, 144, 04018009. [Google Scholar] [CrossRef]
- Li, J.; Wang, A.; Wang, X. Msplit estimate the relationship between LS and its application in gross error detection. Mine Surv. (China) 2013, 2, 57–59. [Google Scholar]
- Huber, P.J. Robust estimation of location parameter. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 492–518. [Google Scholar]
- Huber, P.J. Robust Statistics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Wyszkowska, P.; Duchnowski, R. Msplit estimation based on L1 norm condition. J. Surv. Eng. 2019, 145, 04019006. [Google Scholar] [CrossRef]
- Zienkiewicz, M.H. Determination of an adequate number of competitive functional models in the square Msplit(q) estimation with the use of a modified Baarda’s approach. Surv. Rev. 2018, 1–11. [Google Scholar] [CrossRef]
- Duchnowski, R.; Wiśniewski, Z. Robustness of Msplit(q) estimation: A theoretical approach. Stud. Geophys. Geod. 2019, 63, 390–417. [Google Scholar] [CrossRef]
- Sebert, D.M.; Montgomery, D.C.; Rollier, D.A. A clustering algorithm for identifying multiple outliers in linear regression. Comput. Stat. Data Anal. 1998, 27, 461–484. [Google Scholar] [CrossRef]
- Soto, J.; Vigo Aguiar, M.I.; Flores-Sintas, A. A fuzzy clustering application to precise orbit determination. J. Comput. Appl. Math. 2007, 204, 137–143. [Google Scholar] [CrossRef]
- Spurr, B.D. On estimating the parameters in mixtures of circular normal distributions. J. Int. Assoc. Math. Geol. 1981, 13, 163–173. [Google Scholar] [CrossRef]
- Hsu, J.S.; Walker, J.J.; Orgen, D.E. A stepwise method for determining the number of component distributions in a mixture. Math. Geol. 1986, 18, 153–160. [Google Scholar] [CrossRef]
- Hekimoglu, S.; Koch, K.R. How can reliability of the test for outliers be measured? Allg. Vermes. Nachr. 2000, 7, 247–253. [Google Scholar]
0.2 | −3.1 | 0.4 | 2.9 | −0.5 | −1.1 | −0.6 | 0.6 | 0.9 | −1.8 | −0.7 | −0.4 |
1.4 | −1.2 | −1.0 | 0.9 | −0.4 | −1.3 | 0.7 | 2.9 | 0.5 | 0.7 | 0.5 | −0.8 |
2.1 | −0.6 | −0.6 | −0.6 | 0.1 | −0.6 | 0.5 | 1.3 | −0.3 | −2.8 | −0.1 | 1.1 |
-0.8 | −3.6 | −0.6 | 0.6 | 1.1 | −0.9 | −1.0 | 1.2 | 0.0 | −0.4 | −1.5 | 1.5 |
0.8 | −1.9 | −50.4 | −49.1 | 0.3 | −1.2 | −99.8 | −98.7 | 0.8 | −0.8 | −200.1 | −199.7 |
−0.2 | −0.5 | −0.3 | 0.6 | −0.5 | 0.1 | −0.4 | 0.3 | 0.0 | −1.3 | −0.3 | −1.1 |
−0.4 | −2.0 | −0.1 | −0.1 | 0.2 | 0.5 | −0.2 | −0.4 | 0.0 | −0.2 | −0.1 | 0.9 |
−0.4 | −0.4 | −0.9 | 0.2 | 0.1 | −0.3 | 0.2 | −0.3 | −0.2 | −0.2 | −0.3 | −0.4 |
−0.1 | −0.3 | −50.5 | −50.1 | 0.4 | 0.5 | −49.9 | −49.6 | −0.1 | −0.4 | −50.0 | −50.1 |
−0.5 | −1.4 | −50.1 | −50.2 | −0.6 | −0.4 | −100.1 | −99.8 | −0.5 | −0.8 | −200.3 | −200.2 |
Variant A: Correct Order | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 2.2 | 0.3 | −1.1 | 0.4 | −1.5 | −6.8 | 0.3 | −0.8 | 0.4 | −4.5 | −5.2 |
0.4 | −0.1 | 1.1 | 0.4 | −0.5 | −1.5 | 2.1 | 1.8 | −0.2 | −0.8 | −5.3 | −7.7 |
0.6 | 0.8 | 0.3 | −1.5 | −0.6 | −3.6 | 3.4 | 1.6 | −0.1 | −1.0 | 4.9 | 7.4 |
−0.7 | −0.9 | 0.0 | 1.0 | 0.3 | −1.4 | 2.0 | 2.4 | −1.3 | −0.6 | 5.2 | 7.1 |
−0.2 | 0.5 | −49.8 | −50.3 | 0.4 | −1.5 | −36.2 | −46.5 | −2.0 | −1.0 | 25.3 | −42.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, Z.; Duchnowski, R.; Dumalski, A. Efficacy of Msplit Estimation in Displacement Analysis. Sensors 2019, 19, 5047. https://doi.org/10.3390/s19225047
Wiśniewski Z, Duchnowski R, Dumalski A. Efficacy of Msplit Estimation in Displacement Analysis. Sensors. 2019; 19(22):5047. https://doi.org/10.3390/s19225047
Chicago/Turabian StyleWiśniewski, Zbigniew, Robert Duchnowski, and Andrzej Dumalski. 2019. "Efficacy of Msplit Estimation in Displacement Analysis" Sensors 19, no. 22: 5047. https://doi.org/10.3390/s19225047
APA StyleWiśniewski, Z., Duchnowski, R., & Dumalski, A. (2019). Efficacy of Msplit Estimation in Displacement Analysis. Sensors, 19(22), 5047. https://doi.org/10.3390/s19225047