An Electrochemical DNA Biosensor for Carcinogenicity of Anticancer Compounds Based on Competition between Methylene Blue and Oligonucleotides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Chemicals
2.3. Preparation of Solutions
2.4. Synthesis of Aminated SNs
2.5. Fabrication of DNA Biosensor
2.6. Performance of DNA Biosensor with Synthesized Bioactive Compounds
3. Results and Discussions
3.1. Effect of the Amount of AuNPs, SNs, and Glutaraldehyde Linkers
3.2. Optimization of DNA and MB Concentration
3.3. The Interaction Time of the MB and Carcinogen with Biosensor
3.4. Effect of pH, Ionic Strength, and Buffer Concentration
3.5. Performance of the Biosensor on Cadmium Chloride (CdCl2)
3.6. Performance of DNA Biosensor with Synthesized Bioactive Compounds
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, W.Y.; Xu, J.G.; He, X.W. Characterization of the Binding of Methylene Blue to DNA by Spectroscopic Methods. Anal. Lett. 2008, 33, 2453–2464. [Google Scholar] [CrossRef]
- Li, D.; Xu, Y.; Zhang, L.; Tong, H. A Label-free Electrochemical Biosensor for Acrylamide Based on DNA Immobilized on Graphene Oxide-Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2014, 9, 7217–7227. [Google Scholar]
- Zhu, L.; Zhao, R.; Wang, K.; Xiang, H.; Shang, Z.; Sun, W. Electrochemical Behaviors of Methylene Blue on DNA Modified Electrode and Its Application to the Detection of PCR Product from NOS Sequence. Sensors 2008, 8, 5649–5660. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Bhattacharya, S. Chemistry and biology of DNA-binding small molecules. Curr. Sci. 2012, 102, 212–231. [Google Scholar]
- Rohs, R.; Sklenar, H. Methylene Blue Binding to DNA with Alternating AT Base Sequence: Minor Groove Binding is Favored over Intercalation. J. Biomol. Struct. Dyn. 2004, 21, 699–711. [Google Scholar] [CrossRef]
- Oliveira Brett, A.M.; Macedo, T.R.A.; Raimundo, D.; Marque, M.H.; Serrano, S.H.P. Voltammetric behaviour of mitoxantrone at a DNA-biosensor. Biosens. Bioelectron. 1998, 13, 861–867. [Google Scholar] [CrossRef]
- Del Carlo, M.; Di Marcello, M.; Perugini, M.; Ponzielli, V.; Sergi, M.; Mascini, M.; Compagnone, D. Electrochemical DNA biosensor for polycyclic aromatic hydrocarbon detection. Microchim. Acta 2008, 163, 163–169. [Google Scholar] [CrossRef]
- Smolko, V.; Shurpik, D.; Porfireva, A.; Evtugyn, G.; Stoikov, I.; Hianik, T. Electrochemical aptasensor based on poly (neutral red) and carboxylated pillar[5]arene for sensitive determination of aflatoxin M1. Electroanalysis 2018, 30, 1–12. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Rezaei, B.; Amini, T.M.; Heydari-Bafrooei, E. A novel sensitive DNA-biosensor for detection of a carcinogen, Sudan II, using electrochemically treated pencil graphite electrode by voltammetric methods. Talanta 2012, 88, 244–251. [Google Scholar] [CrossRef]
- Holzinger, M.; Le Goff, A.; Cosner, S. Nanomaterials for biosensing applications: A review. Front. Chem. 2014, 2, 63. [Google Scholar] [CrossRef]
- Xu, H.B.; Ye, R.F.; Yang, S.Y.; Li, R.; Yang, X. Electrochemical DNA nano-biosensor for the detection of genotoxins in water samples. Chin. Chem. Lett. 2014, 25, 29–34. [Google Scholar] [CrossRef]
- Diculescu, V.C.; Paquim, A.C.; Brett, A.M.O. Electrochemical DNA sensors for detection of DNA damage. Sensors 2005, 5, 377–393. [Google Scholar] [CrossRef]
- Arotiba, O.; Owino, J.; Songa, E.; Hendricks, N.; Waryo, T.; Jahed, M.; Baker, P.; Iwuoha, E. An Electrochemical DNA Biosensor Developed on a Nanocomposite Platform of Gold and Polypropyleneimine Dendrimer. Sensors 2008, 8, 6791–6809. [Google Scholar] [CrossRef] [PubMed]
- Bohunicky, B.; Mousa, S.A. Biosensors: The new wave in cancer diagnosis. Nanotechnol. Sci. Appl. 2011, 4, 1–10. [Google Scholar]
- Qhobosheane, M.; Santra, S.; Zhang, P.; Tan, W. Biochemically functionalized silica nanoparticles. Analyst 2001, 126, 1274–1278. [Google Scholar] [CrossRef]
- Hilliard, L.R.; Zhao, X.; Tan, W. Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal. Chim. Acta 2002, 470, 51–56. [Google Scholar] [CrossRef]
- Ribeiro, T.; Baleizao, C.; Farinha, J.P.S. Functional films from silica/polymer nanoparticles. Materials 2014, 7, 3881–3900. [Google Scholar] [CrossRef]
- Cui, S.F.; Addla, D.; Zhou, C.H. Novel 3-aminothiazolquinolones: Design, synthesis, bioactive evaluation, SARs, and preliminary antibacterial mechanism. J. Med. Chem. 2016, 59, 4488–4510. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.; Wu, Y.; Zhang, W.; Chen, X.; You, X.; Hu, L. Synthesis and structure-activity relationship of novel bisindole amidines active against MDR Gram-positive and Gram-negative bacteria. Eur. J. Med. Chem. 2018, 150, 771–782. [Google Scholar] [CrossRef]
- Mu, J.X.; Shi, Y.X.; Wu, H.K.; Sun, Z.H.; Yang, M.Y.; Liu, X.H.; Li, B.J. Microwave assisted synthesis, antifungal activity, DFT and SAR study of 1, 2, 4-triazolo [4, 3-a] pyridine derivatives containing hydrazone moieties. Chem. Cent. J. 2016, 10, 50. [Google Scholar] [CrossRef]
- Nitulescu, G.M.; Draghici, C.; Olaru, O.T. New potential antitumor pyrazole derivatives: Synthesis and cytotoxic evaluation. Int. J. Mol. Sci. 2013, 14, 21805–21818. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Hafez, T.; Osman, S. Synthesis, characterization, and cytotoxicity of some new 5-aminopyrazole and pyrazolo [1, 5-a] pyrimidine derivatives. Sci. Pharm. 2014, 83, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Porcù, E.; Sipos, A.; Basso, G.; Hamel, E.; Bai, R.; Stempfer, V.; Udvardy, A.; Bényei, A.C.; Schmidhammer, H.; Antus, S. Novel 9′-substituted-noscapines: Synthesis with Suzuki cross-coupling, structure elucidation and biological evaluation. Eur. J. Med. Chem. 2014, 84, 476–490. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Li, Z.L.; Li, D.H.; Sun, Y.T.; Shan, D.T.; Bai, J.; Pei, Y.H.; Jing, Y.K.; Hua, H.M. Quinolone and indole alkaloids from the fruits of Euodia rutaecarpa and their cytotoxicity against two human cancer cell lines. Phytochemistry 2014, 109, 133–139. [Google Scholar] [CrossRef]
- Nimbalkar, U.D.; Seijas, J.A.; Vazquez-Tato, M.P.; Damale, M.G.; Sangshetti, J.N.; Nikalje, A.P.G. Ionic Liquid-Catalyzed Green Protocol for Multi-Component Synthesis of Dihydropyrano [2, 3-c] pyrazoles as Potential Anticancer Scaffolds. Molecules 2017, 22, 1628. [Google Scholar] [CrossRef]
- Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules 2015, 20, 16852–16891. [Google Scholar] [CrossRef]
- Glazko, G.V.; Babenko, V.N.; Koonin, E.V.; Rogozin, I.B. Mutational hotspots in the TP53 gene and possibly other tumor suppressors evolve by positive selection. Biol. Direct 2006, 4, 1–9. [Google Scholar]
- Mohammat, M.F.; Maarop, M.S.; Shaameri, Z.; Wibowo, A.; Johari, S.A.; Hamzah, A.S. Practical synthesis and electronic study of non-spiro and spiropyrano[2,3-c]pyrazole-3-carboxylate derivatives via uncatalyzed domino one-pot, four component reactions. Org. Commun. 2018, 11, 149–162. [Google Scholar] [CrossRef]
- Bhagat, S.; Minhajul, A.; Das, G.; Ramkumar, M.; Khan, S.I.; Tekwani, B.L.; Bharatam, P.V. Design, synthesis and biological evaluation of 4-aminoquinoline-guanylthiourea derivatives as antimalarial agents. Bioorg. Chem. 2019, 91, 103094. [Google Scholar] [CrossRef]
- Aminake, M.N.; Mahajan, A.; Kumar, V.; Hans, R.; Wiesner, L.; Taylor, D.; de Kock, C.; Grobler, A.; Smith, P.J.; Kirschner, M.; et al. Synthesis and evaluation of hybrid drugs for a potential HIV/AIDS-malaria combination therapy. Bioorg. Med. Chem. 2012, 20, 5277–5289. [Google Scholar] [CrossRef]
- Sheryn, W.; Ngah, F.A.A.; Latip, J.; Hassan, N.I.; Hasbullah, S.A. Solvent-free microwave accelerated synthesis and structural characterization of phthalide-fused indolines. Heterocycles 2018, 96, 839–849. [Google Scholar]
- Sheryn, W.; Ninomiya, M.; Koketsu, M.; Hasbullah, S.A. In vitro cytotoxicity of synthesized phthalide-fused indoles and indolines against HL-60 and HepG2 cells. Arab. J. Chem. 2019. [Google Scholar] [CrossRef]
- Ortiza, M.; Fragosoa, A.; Ortiz, P.J.; O’Sullivan, C.K. Elucidation of the mechanism of single-stranded DNA interaction with methylene blue: A spectroscopic approach. J. Photochem. Photobiol. A Chem. 2011, 218, 26–32. [Google Scholar] [CrossRef]
- Ahmed Mishaal Mohammed, A.; Rahim, R.; Ibraheem, I.J.; Foo, K.L.; Hisham, H.; Hashim, U.; Al-Douri, Y. Application of Gold Nanoparticles for Electrochemical DNA Biosensor. J. Nanomater. 2014, 13, 1–7. [Google Scholar] [CrossRef]
- Doria, G.; Conde, J.; Veigas, B.; Giestas, L.; Assunção, C.A.M.; Rosa, J.; Baptista, P.V. Noble Metal Nanoparticles for Biosensing Applications. Sensors 2012, 12, 1657–1687. [Google Scholar] [CrossRef]
- Liu, S.; Kang, M.; Yan, F.; Peng, D.; Yang, Y.; He, L.; Wang, M.; Fang, S.; Zhang, Z. Electrochemical DNA Biosensor Based on Microspheres of Cuprous Oxide and Nano-chitosan for Hg(II) Detection. Electrochim. Acta 2015, 160, 64–73. [Google Scholar] [CrossRef]
- Malhotra, B.D.; Chaubey, A.; Singh, S.P. Prospects of conducting polymers in biosensors. Anal. Chim. Acta 2006, 578, 59–74. [Google Scholar] [CrossRef]
- Silva, C.J.S.; Sousa, F.; Gubitz, G.; Cavaco-Paulo, A. Chemical Modifications on Proteins Using Glutaraldehyde. Food Technol. Biotechnol. 2004, 42, 51–56. [Google Scholar]
- Mansor, N.A.; Mohd Zain, Z.; Hamzah, H.H.; Ahmad Noorden, M.S.; Jaapar, S.S.; Beni, V.; Ibupoto, Z.H. Detection of Breast Cancer 1 (BRCA1) Gene Using an Electrochemical DNA Biosensor Based on Immobilized ZnO Nanowires. Open J. Appl. Biosens. 2014, 3, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Erdem, A.; Kerman, K.; Meric, B.; Akarca, U.S.; Ozsoz, M. Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus. Anal. Chim. Acta 2002, 422, 139–149. [Google Scholar] [CrossRef]
- Yang, W.; Ozsoz, M.; Hibbert, D.B.; Gooding, J.J. Evidence for the Direct Interaction Between Methylene Blue and Guanine Bases Using DNA-Modified Carbon Paste Electrodes. Electroanalysis 2002, 14, 18. [Google Scholar] [CrossRef]
- Ozkan, D.; Erdem, A.; Kara, P.; Kerman, K.; Gooding, J.J.; Nielsen, P.P.; Ozsoz, M. Electrochemical detection of hybridization using peptide nucleic acids and methylene blue on self-assembled alkanethiol monolayer modified gold electrodes. Electrochem. Commun. 2002, 4, 796–802. [Google Scholar] [CrossRef]
- Kerman, K.; Ozkan, D.; Kara, P.; Meric, B.; Gooding, J.J.; Ozsoz, M. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Anal. Chim. Acta 2002, 462, 39–47. [Google Scholar] [CrossRef]
- Park, H.; Germini, A.; Sforza, S.; Corradini, R.; Marchelli, R.; Knoll, W. Effect of ionic strength on PNA-DNA hybridization on surfaces and in solution. Biointerphases 2007, 2, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Springer, T.; Sipova, H.; Vaisocherova, H.; Stepanek, J.; Homola, J. Shielding effect of monovalent and divalent cations on solid-phase DNA hybridization: Surface plasmon resonance biosensor study. Nucleic Acids Res. 2010, 38, 7343–7351. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.M. Fabrication and characterization of gold nano particles for DNA biosensor applications. Chin. Chem. Lett. 2016, 27, 801–806. [Google Scholar] [CrossRef]
- Sani, N.D.M.; Lee, Y.H.; Marugan, R.S.P.M.; Rajab, N.F. Electrochemical DNA biosensor for potential carcinogen detection in food sample. Food Chem. 2018, 269, 503–510. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Md. Sani, N.D.; Ariffin, E.Y.; Sheryn, W.; Shamsuddin, M.A.; Heng, L.Y.; Latip, J.; Hasbullah, S.A.; Hassan, N.I. An Electrochemical DNA Biosensor for Carcinogenicity of Anticancer Compounds Based on Competition between Methylene Blue and Oligonucleotides. Sensors 2019, 19, 5111. https://doi.org/10.3390/s19235111
Md. Sani ND, Ariffin EY, Sheryn W, Shamsuddin MA, Heng LY, Latip J, Hasbullah SA, Hassan NI. An Electrochemical DNA Biosensor for Carcinogenicity of Anticancer Compounds Based on Competition between Methylene Blue and Oligonucleotides. Sensors. 2019; 19(23):5111. https://doi.org/10.3390/s19235111
Chicago/Turabian StyleMd. Sani, Nor Diyana, Eda Yuhana Ariffin, Wong Sheryn, Mohd Asyraf Shamsuddin, Lee Yook Heng, Jalifah Latip, Siti Aishah Hasbullah, and Nurul Izzaty Hassan. 2019. "An Electrochemical DNA Biosensor for Carcinogenicity of Anticancer Compounds Based on Competition between Methylene Blue and Oligonucleotides" Sensors 19, no. 23: 5111. https://doi.org/10.3390/s19235111
APA StyleMd. Sani, N. D., Ariffin, E. Y., Sheryn, W., Shamsuddin, M. A., Heng, L. Y., Latip, J., Hasbullah, S. A., & Hassan, N. I. (2019). An Electrochemical DNA Biosensor for Carcinogenicity of Anticancer Compounds Based on Competition between Methylene Blue and Oligonucleotides. Sensors, 19(23), 5111. https://doi.org/10.3390/s19235111