A Personalized Approach to Improve Walking Detection in Real-Life Settings: Application to Children with Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol and Material
- Laboratory: Several straight gait trials were performed by the participants on a 20 m walkway, at 3 self-defined walking speeds: spontaneous, slow and fast. A total of 10 to 15 trials were recorded for each participant;
- Out-of-laboratory: A sequence of ‘daily-life-like’ activities was performed in the hospital corridors and hospital surroundings including static postures of lying, sitting and standing, walking on various surfaces (stones, grass, tarmac), along straight or curved trajectories, up and down stairs, and other free activities of the participant’s choice such as running, jumping or playing on swings. The sequence of activities lasted about 20 min and always started with a predefined body posture (lying on the back on a medical table). During the out-of-laboratory assessment, and for validation purpose, the evaluator was equipped with a camera (GoPro Hero+, USA) on his chest wearing a harness. The camera captured the participant during the entire sequence of daily-life-like activities.
2.3. Data Processing
2.3.1. Pre-Processing
2.3.2. WB Detection
Initial Algorithm (Init)
- Th1 = 50°/s: Minimal amplitude of MS;
- Th2 = 0.5 s: Minimal time between MS of the same side;
- Th3 = 1.5 s: Maximal time between MS of the same side;
- Th4 = 3.5 s: Maximal time between MS_R and MS_L.
Customized Algorithms
2.3.3. Walking Speed Computation
2.4. Analysis
3. Results
3.1. Participants
3.2. Laboratory Gait Features
3.3. WB Detection
3.4. Walking Speed Estimation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jarchi, D.; Pope, J.; Lee, T.K.M.; Tamjidi, L.; Mirzaei, A.; Sanei, S. A Review on Accelerometry-Based Gait Analysis and Emerging Clinical Applications. IEEE Rev. Biomed. Eng. 2018, 11, 177–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lach, J.; Lo, B.; Yang, G.-Z. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J. Biomed. Health Inform. 2016, 20, 1521–1537. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Towards a Common Language for Functioning, Disability and Health: ICF The International Classification of Functioning, Disability and Health; World Health Organization: Geneva, Switzerland, 2002; Volume 1149. [Google Scholar]
- Gosselin, D.; Wright, A.; Sole, G.; Girolami, G.; Taylor, J.; Baxter, G.D. Maximizing Participation during Walking in Children with Disabilities: Is response to unpredictability important? Pediatr. Phys. Ther. 2018, 31, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Paraschiv-Ionescu, A.; Newman, C.; Carcreff, L.; Gerber, C.N.; Armand, S.; Aminian, K. Locomotion and cadence detection using a single trunk-fixed accelerometer: Validity for children with cerebral palsy in daily life-like conditions. J. NeuroEng. Rehabil. 2019, 16, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberhauser, C.; Cieza, A.; Bostan, C.; Stucki, G.; Bickenbach, J. Which environmental factors are associated with performance when controlling for capacity? J. Rehabil. Med. 2014, 46, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Choi, S.; Lee, M. Step Detection Robust against the Dynamics of Smartphones. Sensors 2015, 15, 27230–27250. [Google Scholar] [CrossRef] [Green Version]
- Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.-F.; Robert, P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 2002, 35, 689–699. [Google Scholar] [CrossRef]
- Pham, M.H.; Elshehabi, M.; Haertner, L.; Del Din, S.; Srulijes, K.; Heger, T.; Synofzik, M.; Hobert, M.A.; Faber, G.S.; Hansen, C.; et al. Validation of a step detection algorithm during straight walking and turning in Patients with Parkinson’s disease and older adults using an inertial measurement unit at the lower back. Front. Neurol. 2017, 8, 457. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Organero, M.; Ruiz-Blázquez, R.; Muñoz-Organero, M.; Ruiz-Blázquez, R. Detecting Steps Walking at very Low Speeds Combining Outlier Detection, Transition Matrices and Autoencoders from Acceleration Patterns. Sensors 2017, 17, 2274. [Google Scholar] [CrossRef] [Green Version]
- Hickey, A.; Del Din, S.; Rochester, L.; Godfrey, A. Detecting free-living steps and walking bouts: Validating an algorithm for macro gait analysis. Physiol. Meas. 2017, 38, N1–N15. [Google Scholar] [CrossRef]
- Salarian, A.; Russmann, H.; Vingerhoets, F.J.G.; Dehollain, C.; Blanc, Y.; Burkhard, P.R.; Aminian, K. Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 2004, 51, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, W.; Hof, A.L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fortino, G.; Gravina, R.; Li, W.; Ma, C. Using cloud-assisted body area networks to track people physical activity in mobility. In Proceedings of the International Conference on Body Area Networks, Sydney, Australia, 28–30 September 2015. [Google Scholar]
- Kong, W.; Lin, J.; Waaning, L.; Sessa, S.; Cosentino, S.; Magistro, D.; Zecca, M.; Kawashima, R.; Takanishi, A. Comparison of gait event detection from shanks and feet in single-task and multi-task walking of healthy older adults. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 2063–2068. [Google Scholar] [CrossRef] [Green Version]
- Pacini Panebianco, G.; Bisi, M.C.; Stagni, R.; Fantozzi, S. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait Posture 2018, 66, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Micó-Amigo, M.E.; Kingma, I.; Ainsworth, E.; Walgaard, S.; Niessen, M.; Van Lummel, R.C.; Van Dieën, J.H. A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly. J. NeuroEng. Rehabil. 2016, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Feldhege, F.; Mau-Moeller, A.; Lindner, T.; Hein, A.; Markschies, A.; Zettl, U.K.; Bader, R. Accuracy of a custom physical activity and knee angle measurement sensor system for patients with neuromuscular disorders and gait abnormalities. Sensors 2015, 15, 10734–10752. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, S.K.; Gage, W.H.; Brooks, D.; Black, S.E.; McIlroy, W.E.; Black, S.E.; Prajapati, S.K.; Brooks, D. A Novel Approach to Ambulatory Monitoring. Neurorehabilit. Neural Repair 2011, 25, 6–14. [Google Scholar] [CrossRef]
- Bertuletti, S.; Della Croce, U.; Cereatti, A. A wearable solution for accurate step detection based on the direct measurement of the inter-foot distance. J. Biomech. 2019, 84, 274–277. [Google Scholar] [CrossRef] [Green Version]
- Sessa, S.; Zecca, M.; Bartolomeo, L.; Takashima, T.; Fujimoto, H.; Takanishi, A. Reliability of the step phase detection using inertial measurement units: Pilot study. Healthc. Technol. Lett. 2015, 2, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Anwary, A.R.; Yu, H.; Vassallo, M. An Automatic gait feature extraction method for identifying gait asymmetry using wearable sensors. Sensors 2018, 18, 676. [Google Scholar] [CrossRef] [Green Version]
- Kheirkhahan, M.; Chen, Z.; Corbett, D.B.; Wanigatunga, A.A.; Manini, T.M.; Ranka, S. Adaptive walk detection algorithm using activity counts. In Proceedings of the 2017 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), Orlando, FL, USA, 16–19 February 2017; pp. 161–164. [Google Scholar] [CrossRef]
- Sellier, E.; Platt, M.J.; Andersen, G.L.; Krägeloh-Mann, I.; De La Cruz, J.; Cans, C.; Cans, C.; Van Bakel, M.; Arnaud, C.; Delobel, M.; et al. Decreasing prevalence in cerebral palsy: A multi-site European population-based study, 1980 to 2003. Dev. Med. Child Neurol. 2016, 58, 85–92. [Google Scholar] [CrossRef]
- Carcreff, L.; Gerber, C.N.; Paraschiv-Ionescu, A.; De Coulon, G.; Newman, C.J.; Armand, S.; Aminian, K. What is the Best Configuration of Wearable Sensors to Measure Spatiotemporal Gait Parameters in Children with Cerebral Palsy? Sensors 2018, 18, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sposaro, F.; Tyson, G. iFall: An android application for fall monitoring and response. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine (EMBC), Minneapolis, MN, USA, 3–6 September 2009; pp. 6119–6122. [Google Scholar] [CrossRef]
- Oudre, L.; Barrois-Müller, R.; Moreau, T.; Truong, C.; Vienne-Jumeau, A.; Ricard, D.; Vayatis, N.; Vidal, P.P.; Barrois-Muller, R.; Moreau, T.; et al. Template-based step detection with inertial measurement units. Sensors 2018, 18, 4033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cola, G.; Avvenuti, M.; Musso, F.; Vecchio, A. Personalized gait detection using a wrist-worn accelerometer. In Proceedings of the 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, The Netherlands, 9–12 May 2017; pp. 173–177. [Google Scholar] [CrossRef]
- Ahmadi, M.; O’Neil, M.; Fragala-Pinkham, M.; Lennon, N.; Trost, S. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy. J. NeuroEng. Rehabil. 2018, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haji Ghassemi, N.; Hannink, J.; Martindale, C.F.; Gaßner, H.; Müller, M.; Klucken, J.; Eskofier, B.M. Segmentation of gait sequences in sensor-based movement analysis: A comparison of methods in Parkinson’s disease. Sensors 2018, 18, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Friard, O.; Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 2016, 7, 1325–1330. [Google Scholar] [CrossRef]
- Mcgrath, T.; Fineman, R.; Stirling, L.; Mcgrath, T.; Fineman, R.; Stirling, L. An Auto-Calibrating Knee Flexion-Extension Axis Estimator Using Principal Component Analysis with Inertial Sensors. Sensors 2018, 18, 1882. [Google Scholar] [CrossRef] [Green Version]
- Najafi, B.; Helbostad, J.L.; Moe-Nilssen, R.; Zijlstra, W.; Aminian, K. Does walking strategy in older people change as a function of walking distance? Gait Posture 2009, 29, 261–266. [Google Scholar] [CrossRef]
- Rochat, S.; Büla, C.J.; Martin, E.; Seematter-Bagnoud, L.; Karmaniola, A.; Aminian, K.; Piot-Ziegler, C.; Santos-Eggimann, B. What is the Relationship between Fear of Falling and Gait in Well-Functioning Older Persons Aged 65 to 70 Years? Arch. Phys. Med. Rehabil. 2010, 91, 879–884. [Google Scholar] [CrossRef]
- Seematter-Bagnoud, L.; Santos-Eggimann, B.; Rochat, S.; Martin, E.; Karmaniola, A.; Aminian, K.; Piot-Ziegler, C.; Büla, C.J. Vulnerability in high-functioning persons aged 65 to 70 years: The importance of the fear factor. Aging Clin. Exp. Res. 2011, 22, 485–486. [Google Scholar] [CrossRef] [Green Version]
- Aminian, K.; Trevisan, C.; Najafi, B.; Dejnabadi, H.; Frigo, C.; Pavan, E.; Telonio, A.; Cerati, F.; Marinoni, E.C.; Robert, P.; et al. Evaluation of an ambulatory system for gait analysis in hip osteoarthritis and after total hip replacement. Gait Posture 2004, 20, 102–107. [Google Scholar] [CrossRef]
- Salarian, A.; Burkhard, P.R.; Vingerhoets, F.J.G.; Jolles, B.M.; Aminian, K. A novel approach to reducing number of sensing units for wearable gait analysis systems. IEEE Trans. Biomed. Eng. 2013, 60, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Öner, M.; Deveci Kocakoç, İ. JMASM 49: A Compilation of Some Popular Goodness of Fit Tests for Normal Distribution: Their Algorithms and MATLAB Codes (MATLAB). J. Mod. Appl. Stat. Methods 2017, 16, 547–575. [Google Scholar] [CrossRef]
- Armand, S.; De Coulon, G.; Bonnefoy-Mazure, A. Gait analysis in children with cerebral palsy. EFORT Open Rev. 2016, 1, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, P.; Storm, F.; Buckley, C.; Bisi, M.C.; Stagni, R.; Mazzà, C. Moving from laboratory to real life conditions: Influence on the assessment of variability and stability of gait. Gait Posture 2018, 59, 248–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slaght, J.; Senechal, M.; Bouchard, D.R. Impact of Walking Cadence Prescription to Reach the Global Physical Activity Recommendations in Older Adults. J. Aging Phys. Act. 2017, 25, 604–611. [Google Scholar] [CrossRef]
- Gerber, C.N.; Carcreff, L.; Paraschiv-Ionescu, A.; Armand, S.; Newman, C.J. Reliability of single-day walking performance and physical activity measures using inertial sensors in children with cerebral palsy. Ann. Phys. Rehabil. Med. 2019, 2–7. [Google Scholar] [CrossRef]
- Del Din, S.; Godfrey, A.; Mazza, C.; Lord, S.; Rochester, L.; Mazzà, C.; Lord, S.; Rochester, L. Free-living monitoring of Parkinson’s disease: Lessons from the field. Mov. Disord. 2016, 31, 1293–1313. [Google Scholar] [CrossRef]
- Moreau, N.G.; Bodkin, A.W.; Bjornson, K.; Hobbs, A.; Soileau, M.; Lahasky, K.; Moreau, N.G.; Bodkin, A.W.; Bjornson, K.; Hobbs, A.; et al. Effectiveness of Rehabilitation Interventions to Improve Gait Speed in Children with Cerebral Palsy: Systematic Review and Meta-analysis. Phys. Ther. 2016, 96, 1938–1954. [Google Scholar] [CrossRef] [Green Version]
- Attal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical Human Activity Recognition Using Wearable Sensors. Sensors 2015, 15, 31314–31338. [Google Scholar] [CrossRef] [Green Version]
- Caldas, R.; Mundt, M.; Potthast, W.; Neto, F.B.D.; Markert, B.; Buarque, F.; Neto, D.L. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait Posture 2017, 57, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Kidzińskiid, Ł.; Delp, S.; Schwartz, M. Automatic real-time gait event detection in children using deep neural networks. PLoS ONE 2019, 14, e0211466. [Google Scholar] [CrossRef] [Green Version]
- Paraschiv-Ionescu, A.; Buchser, E.E.E.; Rutschmann, B.; Najafi, B.; Aminian, K. Ambulatory system for the quantitative and qualitative analysis of gait and posture in chronic pain patients treated with spinal cord stimulation. Gait Posture 2004, 20, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Soltani, A.; Dejnabadi, H.; Savary, M.; Aminian, K. Real-world gait speed estimation using wrist sensor: A personalized approach. IEEE J. Biomed. Health Inform. 2019, 2194, 1. [Google Scholar] [CrossRef] [PubMed]
Threshold | Init | Pop | Indiv | ||
---|---|---|---|---|---|
CP | TD | Left Side | Right Side | ||
Th1 Minimal amplitude of MS (°/s) | 50 | Minimal MS amplitude in lab in the group | Minimal MS amplitude in lab in the group | () × 95th Percentile (ωz_Shankout lab) | () × 95th Percentile (ωz_Shankout lab) |
Th2 Minimal time between MS of the same side (s) | 0.50 | Minimal time between MS in lab in the group | Minimal time between MS in lab in the group | Minimal time between MS_L in lab | Minimal time between MS_R in lab |
Th3 Maximal time between MS of the same side (s) | 1.5 | Maximal time between MS in lab in the group | Maximal time between MS in lab in the group | Maximal time between MS_L max in lab | Maximal time between MS_R in lab |
Th4 Maximal time between MS_R and MS_L (s) | 3.5 | Maximal time between MS_R and MS_L in lab in the group | Maximal time between MS_R and MS_L in lab in the group | Maximal time between MS_R and MS_L in lab |
Group (CP/TD) | Sex | Age (years) Median [IQR] | Height (m) Median [IQR] | Weight (kg) Median [IQR] | GMFCS | Laterality | Orthosis | Walking Aids |
---|---|---|---|---|---|---|---|---|
TD (n = 10) | 7 girls-3 boys | 12.3 [11.5–13.6] | 1.57 [1.52–1.62] | 45.8 [40.0–56.8] | - | - | - | - |
CP (n = 10) | 6 girls-4 boys | 13.0 [11.8–13.9] | 1.56 [1.45–1.60] | 43.5 [37.0–54.5] | 4 GMFCS I-3 GMFCS II-3 GMFCS III | 3 UCP-7 BCP | 6 with AFO | 1 with crutches-3 with walker * |
CP | TD | |||||||
---|---|---|---|---|---|---|---|---|
Signal Features | mean | SD | min | max | mean | SD | min | max |
Minimal amplitude of MS (°/s) | 183 | 65 | 109 | 319 | 270 | 52 | 193 | 354 |
Minimal amplitude of MS (% of signal amplitude) | 58 | 17 | 29 | 82 | 76 | 6 | 66 | 86 |
Minimal time between MS (s) | 0.82 | 0.14 | 0.64 | 1.10 | 0.87 | 0.12 | 0.67 | 1.05 |
Maximal time between MS (s) | 1.71 | 0.73 | 1.18 | 3.53 | 1.41 | 0.21 | 1.11 | 1.92 |
Maximal time between right and left MS (s) | 0.93 | 0.38 | 0.60 | 1.88 | 0.72 | 0.11 | 0.56 | 0.99 |
Sensitivity | Specificity | Accuracy | Precision | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Init | Pop | Indiv | Init | Pop | Indiv | Init | Pop | Indiv | Init | Pop | Indiv | |
TD | 1.00 | 1.00 | 0.99 | 0.83 | 0.86 | 0.95 | 0.9 | 0.93 | 0.98 | 0.93 | 0.95 | 0.98 |
(n = 10) | [1.00–1.00] | [1.00–1.00] | [0.98–0.99] | [0.77–0.83] | [0.83–0.89] | [0.93–0.96] | [0.89–0.92] | [0.91–0.94] | [0.97–0.98] | [0.92–0.94] | [0.94–0.96] | [0.96–0.98] |
CP | 1.00 | 1.00 | 0.99 | 0.74 | 0.72 | 0.87 | 0.88 | 0.9 | 0.95 | 0.92 | 0.92 | 0.94 |
(n = 10) | [1.00–1.00] | [1.00–1.00] | [0.96–0.99] | [0.67–0.82] | [0.69–0.84] | [0.83–0.90] | [0.85–0.91] | [0.88–0.92] | [0.92–0.97] | [0.88–0.93] | [0.91–0.94] | [0.93–0.96] |
ALL | 1.00 | 1.00 | 0.99 | 0.79 | 0.84 | 0.91 | 0.89 | 0.92 | 0.97 | 0.92 | 0.94 | 0.96 |
(n = 20) | [1.00–1.00] | [1.00–1.00] | [0.98–0.99] | [0.70–0.83] | [0.70–0.88] | [0.87–0.96] | [0.87–0.92] | [0.89–0.93] | [0.93–0.98] | [0.91–0.94] | [0.91–0.95] | [0.94–0.98] |
Group | GMFCS | WB (n) | Gait Cycles | Mean | SD | Median | Minimum | Maximum | 1st Quartile | 3rd Quartile | Skewness | Kurtosis | Distribution Comparison w (p-Value) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(n) | (m/s) | (m/s) | (m/s) | (m/s) | (m/s) | (m/s) | (m/s) | |||||||||||||||||
Init | Pers | Init | Pers | Init | Pers | Init | Pers | Init | Pers | Init | Pers | Init | Pers | Init | Pers | Init | Pers | Init | Pers | Init | Pers | |||
TD | - | 10 | 12 | 571 | 512 | 1.39 | 1.44 | 0.24 | 0.22 | 1.44 | 1.46 | 0.28 | 0.92 | 1.73 | 1.73 | 1.3 | 1.33 | 1.54 | 1.55 | −1.8 | −0.5 | 7.37 | 2.82 | 0.02 * |
TD | - | 6 | 13 | 611 | 553 | 1.19 | 1.22 | 0.23 | 0.21 | 1.23 | 1.24 | 0.23 | 0.64 | 1.67 | 1.67 | 1.09 | 1.12 | 1.32 | 1.33 | −1.27 | −0.41 | 6.40 | 3.54 | 0.06 |
TD | - | 8 | 14 | 567 | 498 | 1.37 | 1.4 | 0.21 | 0.19 | 1.44 | 1.45 | 0.26 | 0.65 | 1.8 | 1.78 | 1.32 | 1.34 | 1.53 | 1.53 | −1.81 | −1.41 | 6.96 | 5.26 | 0.367 |
TD | - | 7 | 10 | 589 | 543 | 1.14 | 1.16 | 0.17 | 0.16 | 1.16 | 1.17 | 0.18 | 0.64 | 1.47 | 1.43 | 1.07 | 1.08 | 1.24 | 1.24 | −1.71 | −0.34 | 9.64 | 3.48 | 0.31 |
TD | - | 11 | 24 | 649 | 476 | 1.38 | 1.43 | 0.29 | 0.25 | 1.44 | 1.47 | 0.18 | 0.75 | 1.97 | 1.97 | 1.27 | 1.32 | 1.56 | 1.57 | −1.5 | −0.62 | 6.25 | 3.62 | 0.041 * |
TD | - | 7 | 14 | 602 | 543 | 1.29 | 1.31 | 0.2 | 0.19 | 1.31 | 1.32 | 0.14 | 0.45 | 1.71 | 1.68 | 1.21 | 1.22 | 1.41 | 1.41 | −2.02 | −1.31 | 11.40 | 7.17 | 0.321 |
TD | - | 7 | 16 | 541 | 484 | 1.59 | 1.64 | 0.25 | 0.22 | 1.64 | 1.67 | 0.36 | 0.84 | 2.02 | 2.02 | 1.5 | 1.54 | 1.75 | 1.76 | −1.68 | −1.01 | 6.93 | 5.08 | 0.067 |
TD | - | 7 | 14 | 506 | 465 | 1.3 | 1.34 | 0.14 | 0.13 | 1.35 | 1.36 | 0.29 | 0.68 | 1.57 | 1.57 | 1.27 | 1.29 | 1.41 | 1.42 | −2.44 | −1.61 | 10.56 | 8.01 | 0.061 |
TD | - | 8 | 9 | 559 | 517 | 1.32 | 1.33 | 0.16 | 0.16 | 1.35 | 1.35 | 0.11 | 0.35 | 1.64 | 1.64 | 1.26 | 1.27 | 1.42 | 1.43 | −2.38 | −1.86 | 12.00 | 9.44 | 0.414 |
TD | - | 10 | 23 | 610 | 540 | 1.28 | 1.32 | 0.26 | 0.22 | 1.32 | 1.35 | 0.31 | 0.54 | 1.98 | 1.98 | 1.16 | 1.21 | 1.43 | 1.44 | −1.14 | −0.65 | 5.24 | 4.71 | 0.007 * |
CP | 1 | 8 | 10 | 520 | 473 | 1.31 | 1.33 | 0.24 | 0.22 | 1.35 | 1.36 | 0.25 | 0.33 | 1.85 | 1.85 | 1.22 | 1.24 | 1.46 | 1.46 | −1.31 | −1.07 | 5.96 | 5.40 | 0.377 |
CP | 1 | 15 | 25 | 694 | 606 | 1.05 | 1.09 | 0.22 | 0.2 | 1.08 | 1.09 | 0.14 | 0.55 | 1.51 | 1.51 | 0.97 | 0.99 | 1.18 | 1.19 | −1.14 | −0.4 | 5.31 | 3.49 | 0.047 * |
CP | 1 | 9 | 16 | 562 | 491 | 1.17 | 1.22 | 0.17 | 0.15 | 1.22 | 1.23 | 0.24 | 0.78 | 1.43 | 1.43 | 1.12 | 1.15 | 1.29 | 1.3 | −2.05 | −0.74 | 8.56 | 4.03 | 0.016 * |
CP | 1 | 7 | 18 | 607 | 532 | 0.9 | 0.93 | 0.25 | 0.22 | 0.9 | 0.92 | 0.16 | 0.58 | 1.57 | 1.5 | 0.78 | 0.81 | 1.02 | 1.04 | 0.09 | 0.612 | 3.99 | 3.28 | 0.015 * |
CP | 2 | 8 | 23 | 785 | 749 | 1.08 | 1.1 | 0.27 | 0.25 | 1.11 | 1.12 | 0.33 | 0.33 | 1.56 | 1.56 | 0.97 | 0.99 | 1.23 | 1.24 | −0.75 | −0.69 | 3.64 | 3.73 | 0.299 |
CP | 2 | 6 | 23 | 646 | 601 | 0.94 | 0.98 | 0.18 | 0.16 | 0.97 | 0.98 | 0.16 | 0.30 | 1.5 | 1.5 | 0.87 | 0.9 | 1.05 | 1.06 | −1.19 | −0.44 | 5.57 | 5.37 | 0.027 * |
CP | 2 | 14 | 50 | 808 | 741 | 0.86 | 0.89 | 0.26 | 0.25 | 0.88 | 0.9 | 0.09 | 0.17 | 1.38 | 1.38 | 0.74 | 0.77 | 1.00 | 1.02 | −0.74 | −0.38 | 4.04 | 3.42 | 0.061 |
CP | 3 | 21 | 20 | 378 | 347 | 0.53 | 0.53 | 0.18 | 0.19 | 0.49 | 0.49 | 0.17 | 0.16 | 1.63 | 1.63 | 0.41 | 0.41 | 0.59 | 0.59 | 1.82 | 1.73 | 8.69 | 8.44 | 0.991 |
CP | 3 | 9 | 8 | 296 | 298 | 0.43 | 0.43 | 0.12 | 0.12 | 0.43 | 0.43 | 0.12 | 0.12 | 0.66 | 0.66 | 0.38 | 0.37 | 0.5 | 0.5 | −0.35 | −0.4 | 3.15 | 3.20 | 0.885 |
CP | 3 | 17 | 18 | 817 | 783 | 0.66 | 0.68 | 0.1 | 0.11 | 0.68 | 0.68 | 0.14 | 0.37 | 1.00 | 1.00 | 0.63 | 0.63 | 0.74 | 0.74 | −1.22 | −0.24 | 5.78 | 3.91 | 0.707 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carcreff, L.; Paraschiv-Ionescu, A.; Gerber, C.N.; Newman, C.J.; Armand, S.; Aminian, K. A Personalized Approach to Improve Walking Detection in Real-Life Settings: Application to Children with Cerebral Palsy. Sensors 2019, 19, 5316. https://doi.org/10.3390/s19235316
Carcreff L, Paraschiv-Ionescu A, Gerber CN, Newman CJ, Armand S, Aminian K. A Personalized Approach to Improve Walking Detection in Real-Life Settings: Application to Children with Cerebral Palsy. Sensors. 2019; 19(23):5316. https://doi.org/10.3390/s19235316
Chicago/Turabian StyleCarcreff, Lena, Anisoara Paraschiv-Ionescu, Corinna N. Gerber, Christopher J. Newman, Stéphane Armand, and Kamiar Aminian. 2019. "A Personalized Approach to Improve Walking Detection in Real-Life Settings: Application to Children with Cerebral Palsy" Sensors 19, no. 23: 5316. https://doi.org/10.3390/s19235316
APA StyleCarcreff, L., Paraschiv-Ionescu, A., Gerber, C. N., Newman, C. J., Armand, S., & Aminian, K. (2019). A Personalized Approach to Improve Walking Detection in Real-Life Settings: Application to Children with Cerebral Palsy. Sensors, 19(23), 5316. https://doi.org/10.3390/s19235316