Development of a Data Logger for Capturing Human-Machine Interaction in Wheelchair Head-Foot Steering Sensor System in Dyskinetic Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wheelchair Head-Foot Steering System Function
2.2. Requirements of the Data Logging System for the Wheelchairs
2.3. Microcontroller Platform Selection
2.4. Data Logger Development
2.4.1. Data Logger Hardware
2.4.2. Data Logger Software
2.5. 9-DOF IMUs Operation
2.6. Expermental Set up, Device Characterization
2.6.1. Signal Synchronization of Wheelchair IMU Data and Wheelchair Sensors Data
2.6.2. Power and Current Consumption Measurement
2.6.3. Bluetooth Transmission Latency Measurement
2.7. Implementation of the Wheelchair Data Logger in DCP Patient Group
3. Results
3.1. Electrical Proporerties
3.2. Bluetooth Transmission Latency
3.3. Signal Synchronization Results
3.4. Visualization of the Wheelchair and User Data
3.5. Comparison of Driving Pattern Between DCP Patients and a Healthy Subject
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DCP | Dyskinetic Cerebral Palsy |
IMU | Inertial Measurement Unit |
GPS | Global Positioning System |
CP | Cerebral Palsy |
DoF | Degree of Freedom |
RTC | Real-Time Clock |
GB | Gigabyte |
SPI | Serial Peripheral Interface |
CS | Chip Select |
MISO | Master In Slave Out |
MOSI | Master Out Slave In |
SCL | Bus Clock Line |
I2C | Inter-Integrated Circuit |
UART | Universal Asynchronous Receiver-Transmitter |
BT | Bluetooth |
V | Volt |
mA | milliampere |
ADC | Analog to Digital Converter |
LED | Light Emitting Diode |
ECG | Electrocardiogram |
s | Standard Deviation |
Appendix A
Wheelchair Models |
---|
Sunrise Medical Hippo |
Invacare Moover 785 |
Sunrise Medical You–Q Alex |
Permobil F3 Corpus |
Appendix B
Appendix C
References
- Guidelines on the Provision of Manual Wheelchairs in Less-Resourced Settings. Available online: http://www.who.int/disabilities/publications/technology/wheelchairguidelines/en (accessed on 17 October 2019).
- Routhier, F.; Lettre, J.; Miller, W.C.; Borisoff, J.F.; Keetch, K.; Mitchell, I.M.; Research Team, C. Data logger technologies for manual wheelchairs: A scoping review. Assist. Technol. 2018, 30, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Routhier, F.; Lettre, J.; Miller, W.C.; Borisoff, J.F.; Keetch, K.; Mitchell, I.M.; Research Team, C. Data logger technologies for powered wheelchairs: A scoping review. Assist. Technol. 2019, 31, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Graham, H.K.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.-P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S.; et al. Cerebral palsy. Nat. Rev. Dis. Primers 2016, 2, 15082. [Google Scholar] [CrossRef]
- Monbaliu, E.; Himmelmann, K.; Lin, J.-P.; Ortibus, E.; Bonouvrié, L.; Feys, H.; Vermeulen, R.J.; Dan, B. Clinical presentation and management of dyskinetic cerebral palsy. Lancet. Neurol. 2017, 16, 741–749. [Google Scholar] [CrossRef]
- Himmelmann, K.; McManus, V.; Hagberg, G.; Uvebrant, P.; Krägeloh-Mann, I.; Cans, C. Dyskinetic cerebral palsy in Europe: Trends in prevalence and severity. Arch. Dis. Child. 2009, 94, 921–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monbaliu, E.; de Cock, P.; Ortibus, E.; Heyrman, L.; Klingels, K.; Feys, H. Clinical patterns of dystonia and choreoathetosis in participants with dyskinetic cerebral palsy. Dev. Med. Child Neurol. 2016, 58, 138–144. [Google Scholar] [CrossRef]
- Arner, M.; Eliasson, A.-C.; Nicklasson, S.; Sommerstein, K.; Hägglund, G. Hand function in cerebral palsy. Report of 367 children in a population-based longitudinal health care program. J. Hand. Surg. Am. 2008, 33, 1337–1347. [Google Scholar] [CrossRef]
- Himmelmann, K.; Hagberg, G.; Wiklund, L.M.; Eek, M.N.; Uvebrant, P. Dyskinetic cerebral palsy: A population-based study of children born between 1991 and 1998. Dev. Med. Child Neurol. 2007, 49, 246–251. [Google Scholar] [CrossRef]
- Bekteshi, S.; Konings, M.; Nica, I.G.; Gakopoulos, S.; Vanmechelen, I.; Aerts, J.-M.; Hallez, H.; Monbaliu, E. Development of the Dyskinesia impairment mobility scale to measure presence and severity of dystonia and choreoathetosis during powered mobility in dyskinetic cerebral palsy. Appl. Sci. 2019, 9, 3481. [Google Scholar] [CrossRef] [Green Version]
- Nayyar, A.; Puri, V. A review of Arduino boards, Lilypad’s & Arduino shields. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 1485–1492. [Google Scholar]
- Tsekoura, I.; Rebel, G.; Glösekötter, P.; Berekovic, M. An evaluation of energy efficient microcontrollers. In Proceedings of the 2014 9th International Symposium on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), Montpellier, France, 26–28 May 2014; pp. 1–5. [Google Scholar]
- Raza, A.; Ikram, A.A.; Amin, A.; Ikram, A.J. A review of low cost and power efficient development boards for IoT applications. In Proceedings of the 2016 Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016; pp. 786–790. [Google Scholar]
- Barrett, S.F. Arduino Microcontroller Processing for Everyone! 3rd ed.; Morgan and Claypool Publishers: San Rafael, CA, USA, 2010. [Google Scholar]
- Embedded Development Hardware Kits & Boards. Available online: http://www.ti.com/design-resources/embedded-development/hardware-kits-boards.html (accessed on 17 October 2019).
- MCU & MPU Eval Tools. Available online: https://www.st.com/en/evaluation-tools/mcu-mpu-eval-tools.html (accessed on 17 October 2019).
- Ma, C.; Li, W.; Gravina, R.; Fortino, G. Posture detection based on smart cushion for wheelchair users. Sensors 2017, 17, 719. [Google Scholar] [CrossRef]
- Ma, C.; Li, W.; Gravina, R.; Fortino, G. Activity recognition and monitoring for smart wheelchair users. In Proceedings of the 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Nanchang, China, 4–6 May 2016; pp. 664–669. [Google Scholar]
- Daneshvar, F.; Moghimi, S.; Reza, L. Design and evaluation of a pressure and temperature monitoring system for pressure ulcer prevention. Int. J. Manag. Pract. 2014, 11, 242–252. [Google Scholar]
- Gassara, H.E.; Almuhamed, S.; Moukadem, A.; Schacher, L.; Dieterlen, A.; Adolphe, D. Smart wheelchair: Integration of multiple sensors. In Proceedings of the 17th World Textile Conference AUTEX 2017, Corfu, Greece, 29–31 May 2017; p. 072008. [Google Scholar]
- Arias, D.E.; Pino, E.J.; Aqueveque, P.; Curtis, D.W. Wireless monitoring system for wheelchair users with severe mobility impairment. Mobile Health 2015, 5, 195–219. [Google Scholar]
- Adafruit Data Logger Shield. Available online: https://learn.adafruit.com/adafruit-data-logger-shield/overview (accessed on 17 October 2019).
- Bluetooth Module HC-05-ePro Labs WiKi. Available online: https://wiki.eprolabs.com/index.php?title=Bluetooth_Module_HC-05 (accessed on 17 October 2019).
- Java Telemetry Viewer. Available online: https://github.com/farrellf/Telemetry-Viewer (accessed on 17 October 2019).
- Knapp, C.; Carter, G. The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 1976, 24, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Fridman, L.; Brown, D.E.; Angell, W.; Abdić, I.; Reimer, B.; Noh, H.Y. Automated synchronization of driving data using vibration and steering events. Pattern Recognit. Lett. 2016, 75, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.E.; Emerek, K.; Jensen, A.S.; Graff, C.; Melgaard, J.; Sogaard, P.; SoreNsen, K.; Strujk, J.J. Temporal alignment of asynchronously aampled biomedical signals. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 1–4. [Google Scholar]
- Abboud, S.; Sadeh, D. The use of cross-correlation function for the alignment of ECG waveforms and rejection of extrasystoles. Comput. Biomed. Res. 1984, 17, 258–266. [Google Scholar] [CrossRef]
- Fu, Y.; Hoang, T.; Mechitov, K.; Kim, J.R.; Zhang, D.; Spencer, B.F., Jr. Sudden event monitoring of civil infrastructure using demand-based wireless smart sensors. Sensors 2018, 18, 4480. [Google Scholar] [CrossRef] [Green Version]
- Rhudy, B.M. Time alignment techniques for experimental sensor data. Int. J. Comput. Sci. Eng. Survey 2014, 5, 1–14. [Google Scholar] [CrossRef]
- Nakutis, Ž. Embedded systems power consumption measurement methods overview. MATAVIMAI 2009, 2, 29–35. [Google Scholar]
- Ziegler, S.; Woodward, R.C.; Iu, H.H.; Borle, L.J. Current sensing techniques: A review. IEEE Sens. J. 2009, 9, 354–376. [Google Scholar] [CrossRef]
- Giovino, B. Making Sense of Current Sensing. Available online: https://eu.mouser.com/applications/making-sense-current-sensing (accessed on 17 October 2019).
- INA219 High Side DC Current Sensor Breakout. Available online: https://www.adafruit.com/product/904 (accessed on 17 October 2019).
- Noueihed, J.; Diemer, R.; Chakraborty, S.; Biala, S. Comparing bluetooth HDP and SPP for mobile health devices. In Proceedings of the 2010 International Conference on Body Sensor Networks, Singapore, 7–9 June 2010; pp. 222–227. [Google Scholar]
- Classen, J.; Hollick, M. Inside job: Diagnosing bluetooth lower layers using Off-the-shelf devices. In Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, Miami, FL, USA, 15–17 May 2019; 2019; pp. 186–191. [Google Scholar]
- Thati, V.B.; Vankeirsbilck, J.; Boydens, J. Comparative study on data error detection techniques in embedded systems. In Proceedings of the 2016 XXV International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 12–14 September 2016; pp. 1–4. [Google Scholar]
- Castillo-Secilla, J.M.; Palomares, J.M.; Olivares, J. Temperature-compensated clock skew adjustment. Sensors 2013, 13, 10981–11006. [Google Scholar] [CrossRef]
- Marchetto, P.; Strickhart, A.; Raymond, M.; Harold, C. Temperature Compensation of a Quartz Tuning-Fork Clock Crystal via Post-Processing. In Proceedings of the 2012 IEEE International Frequency Control Symposium, Baltimore, MD, USA, 21–24 May 2012; pp. 1–4. [Google Scholar]
- Karmarkar, A.M.; Cooper, R.A.; Wang, H.; Kelleher, A.; Cooper, R. Analyzing wheelchair mobility patterns of community-dwelling older adults. J. Rehabil. Res. Dev. 2011, 48, 1077–1086. [Google Scholar] [CrossRef]
- Dicianno, B.E.; Sibenaller, S.; Kimmich, C.; Cooper, R.A.; Pyo, J. Joystick use for virtual power wheelchair driving in individuals with tremor: Pilot study. J. Rehabil. Res. Dev. 2009, 46, 269–276. [Google Scholar] [CrossRef]
- Gillham, M.; Pepper, M.; Kelly, S.; Howells, G. Feature determination from powered wheelchair user joystick input characteristics for adapting driving assistance. Wellcome Open Res. 2017, 2, 93. [Google Scholar] [CrossRef] [Green Version]
- Lung, C.-W.; Cheng, T.-Y.; Jan, Y.-K.; Chen, H.-C.; Liau, B.-Y. Electromyographic assessments of muscle activation patterns during driving a power wheelchair. In Advances in Physical Ergonomics and Human Factors; Springer: Cham, Switzerland, 2016; Volume 489, pp. 705–711. [Google Scholar]
- Sorrento, G.U.; Archambault, P.S.; Routhier, F.; Dessureault, D.; Boissy, P. Assessment of joystick control during the performance of powered wheelchair driving tasks. J. Neuroeng. Rehabil. 2011, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Eckert, M.; Gómez-Martinho, I.; Meneses, J.; Martínez, J.-F. New Approaches to exciting exergame-experiences for people with motor function impairments. Sensors 2017, 17, 354. [Google Scholar] [CrossRef]
- Rabhi, Y.; Mrabet, I.; Fnaiech, F. Intelligent control wheelchair using a new visual joystick. J. Healthc. Eng. 2018. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.P.; Wang, C.C.; Hung, J.H.; Chien, K.C.; Liu, W.-Y.; Cheng, C.-H.; Ng, H.-H.; Lin, Y.-H. Joystick-controlled video console game practice for developing power wheelchairs users’ indoor driving skills. J. Phys. Ther. Sci. 2015, 27, 495–498. [Google Scholar] [CrossRef] [Green Version]
- FitzGerald, J.J.; Lu, Z.; Jaroensettasin, P.; Antoniades, C.A. Quantifying motor impairment in movement disorders. Front. Neurosci. 2018, 12, 202. [Google Scholar] [CrossRef] [Green Version]
- Lukšys, D.; Jonaitis, G.; Griškevičius, J. Quantitative analysis of parkinsonian tremor in a clinical setting using inertial measurement units. Parkinson’s Dis. 2018. [Google Scholar] [CrossRef] [Green Version]
- Buckley, C.; Galna, B.; Rochester, L.; Mazzà, C. Quantification of upper body movements during gait in older adults and in those with Parkinson’s disease: Impact of acceleration realignment methodologies. Gait Posture 2017, 52, 265–271. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gakopoulos, S.; Nica, I.G.; Bekteshi, S.; Aerts, J.-M.; Monbaliu, E.; Hallez, H. Development of a Data Logger for Capturing Human-Machine Interaction in Wheelchair Head-Foot Steering Sensor System in Dyskinetic Cerebral Palsy. Sensors 2019, 19, 5404. https://doi.org/10.3390/s19245404
Gakopoulos S, Nica IG, Bekteshi S, Aerts J-M, Monbaliu E, Hallez H. Development of a Data Logger for Capturing Human-Machine Interaction in Wheelchair Head-Foot Steering Sensor System in Dyskinetic Cerebral Palsy. Sensors. 2019; 19(24):5404. https://doi.org/10.3390/s19245404
Chicago/Turabian StyleGakopoulos, Sotirios, Ioana Gabriela Nica, Saranda Bekteshi, Jean-Marie Aerts, Elegast Monbaliu, and Hans Hallez. 2019. "Development of a Data Logger for Capturing Human-Machine Interaction in Wheelchair Head-Foot Steering Sensor System in Dyskinetic Cerebral Palsy" Sensors 19, no. 24: 5404. https://doi.org/10.3390/s19245404
APA StyleGakopoulos, S., Nica, I. G., Bekteshi, S., Aerts, J. -M., Monbaliu, E., & Hallez, H. (2019). Development of a Data Logger for Capturing Human-Machine Interaction in Wheelchair Head-Foot Steering Sensor System in Dyskinetic Cerebral Palsy. Sensors, 19(24), 5404. https://doi.org/10.3390/s19245404