Dissolved Carbon Dioxide Sensing Platform for Freshwater and Saline Water Applications: Characterization and Validation in Aquaculture Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Other Materials
2.2. Sensing Layer Preparation and Sensing Chemistry
2.3. Dissolved CO2 Optrode Configuration
2.4. Assessment of the dCO2 Optrode Performance
2.4.1. Experimental Setup and Conditions for Laboratory Assays
2.4.2. Optrode Calibration
2.4.3. Optrode Precision, Accuracy, Sensitivity and Response Time in Deionized Water and Saline Water (2.5%)
2.4.4. Agitation Conditions
2.5. Dissolved CO2 Dynamics in a Recirculating Shallow Raceway System (SRS+RAS) Prototype: Performance Comparison between New dCO2 Optrode and Oxyguard CO2 Analyzer®
2.5.1. Prototype Characteristics
2.5.2. Dissolved CO2 Dynamics Studies in the SRS+RAS Prototype
2.6. Continuous dCO2 Monitoring in an Experimental Fish Culture System with Water Recirculation
3. Results
3.1. Experimental Laboratory Results: Gaseous CO2 and dCO2 Measurements
3.2. Optrode Calibration Curves and Associated Data
3.3. Optrode Precision, Accuracy, and Response Time in Deionized Water and Saline Water (2.5%)
3.4. Optrode Sensitivity
3.5. Dissolved CO2 Dynamics in a SRS+RAS Prototype
3.6. Laboratory Fish Culture System dCO2 Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mills, A.; Yusufu, D. Extruded colour-based plastic film for the measurement of dissolved CO2. Sens. Actuators B Chem. 2016, 237, 1076–1084. [Google Scholar] [CrossRef] [Green Version]
- Moore, C.; Barnard, A.; Fietzek, P.; Lewis, M.R.; Sosik, H.M.; White, S.; Zielinski, O. Optical tools for ocean monitoring and research. Ocean Sci. Dicuss. 2009, 5, 661–684. [Google Scholar] [CrossRef] [Green Version]
- Wolfbeis, O.S. Fiber-optic sensors in bioprocess control. Bioprocess Technol. 1990, 6, 95–125. [Google Scholar] [PubMed]
- Zosel, J.; Oelßner, W.; Decker, M.; Gerlach, G.; Guth, U. The measurement of dissolved and gaseous carbon dioxide concentration. Meas. Sci. Technol. 2011, 22, 072001. [Google Scholar] [CrossRef]
- Neethirajan, S.; Jayas, D.S.; Sadistap, S. Carbon Dioxide (CO2) Sensors for the Agri-food Industry—A Review. Food Bioprocess Technol. 2008, 2, 115–121. [Google Scholar] [CrossRef]
- Breland, J.A.; Byrne, R.H. Determination of Sea Water Alkalinity by Direct Equilibration with Carbon Dioxide. Anal. Chem. 1992, 64, 2306–2309. [Google Scholar] [CrossRef]
- Johnson, M.S.; Billett, M.F.; Dinsmore, K.J.; Wallin, M.; Dyson, K.E.; Jassal, R.S. Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems-method and applications. Ecohydrol. Ecosyst. Land Water Process Interact. Ecohydrogeomorphol. 2010, 3, 68–78. [Google Scholar] [CrossRef]
- Mills, A. Optical Sensors for Carbon Dioxide and Their Applications. In Sensors for Environment, Health and Security; Baraton, M.-I., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 347–370. [Google Scholar]
- Williamson, P.; Widdicombe, S. The Rise of CO2 and Ocean Acidification. Earth Syst. Environ. Sci. 2018, 5, 51–59. [Google Scholar]
- Oliva, R.D.P.; Vasquez-Lavín, F.; Martin, V.A.S.; Hernández, J.I.; Vargas, C.A.; Gonzalez, P.S.; Gelcich, S. Ocean Acidification, Consumers’ Preferences, and Market Adaptation Strategies in the Mussel Aquaculture Industry. Ecol. Econ. 2019, 158, 42–50. [Google Scholar] [CrossRef]
- Martens, L.G.; Witten, P.E.; Fivelstad, S.; Huysseune, A.; Sævareid, B.; Vikesa, V.; Obach, A. Impact of high water carbon dioxide levels on Atlantic salmon smolts (Salmo salar L.): Effects on fish performance, vertebrae composition and structure. Aquaculture 2006, 261, 80–88. [Google Scholar] [CrossRef]
- Summerfelt, S.T.; Sharrer, M.J. Design implication of carbon dioxide production within biofilters contained in recirculating salmonid culture systems. Aquac. Eng. 2004, 32, 171–182. [Google Scholar] [CrossRef]
- Pfeiffer, T.J.; Summerfelt, S.T.; Watten, B.J. Comparative performance of CO2 measuring methods: Marine aquaculture recirculation system application. Aquac. Eng. 2011, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Borges, M.T.; Domingues, J.O.; Jesus, J.M.; Pereira, C.M. Direct and continuous dissolved CO2 monitoring in shallow raceway systems: From laboratory to commercial-scale applications. Aquac. Eng. 2012, 49, 10–17. [Google Scholar] [CrossRef]
- Weiss, R.F. Determinations of Carbon Dioxide and Methane by Dual Catalyst Flame lonization Chromatography and Nitrous Oxide by Electron Capture Chromatography. J. Chromatogr. Sci. 1981, 9, 611–616. [Google Scholar] [CrossRef]
- Jin, Y.-J.; Moon, B.-C.; Kwak, G. Colorimetric fluorescence response to carbon dioxide using charge transfer dye and molecular rotor dye in smart solvent system. Dyes Pigments 2016, 132, 270–273. [Google Scholar] [CrossRef]
- Ishiji, D.W.C.T.; Takahashi, T.; Takahashi, K. Amperometric sensor for monitoring of dissolved carbon dioxide in seawater. Sens. Actuators B Chem. 2001, 76, 265–269. [Google Scholar] [CrossRef]
- Severinghaus, J.W. First electrodes for blood PO2 and PCO2 determination. J. Appl. Physiol. 2004, 97, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- Buhlmann, E.P.P.; Bakke, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. Chem. Rev. 1998, 98, 1593–1687. [Google Scholar] [CrossRef]
- Wang, Z.A.; Liu, X.; Byrne, R.H.; Wanninkhof, R.; Bernstein, R.E.; Kaltenbacher, E.A.; Patten, J. Simultaneous spectrophotometric flow-through measurements of pH, carbon dioxide fugacity, and total inorganic carbon in seawater. Anal. Chim. Acta 2007, 596, 23–36. [Google Scholar] [CrossRef]
- Tabacco, M.U.M.B.; McAllister, M.; Walt, D.R. An Autonomous Sensor and Telemetry System for Low-Level pCO2 Measurements in Seawater. Anal. Chim. 1999, 71, 154–161. [Google Scholar] [CrossRef]
- Abdullah, M.I.; Eek, E. Automathic method for the determination of total CO2 in natural waters. Water Res. 1995, 29, 1231–1234. [Google Scholar] [CrossRef]
- Moran, D. Carbon dioxide degassing in fresh and saline water. I: Degassing performance of a cascade column. Aquac. Eng. 2010, 43, 29–36. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem. 2002, 74, 2663–2678. [Google Scholar] [CrossRef] [PubMed]
- Atamanchuk, D.; Tengberg, A.; Thomas, P.J.; Hovdenes, J.; Apostolidis, A.; Huber, C.; Hall, P.O.J. Performance of a lifetime-based optode for measuring partial pressure of carbon dioxide in natural waters. Limnol. Oceanogr. Methods 2014, 12, 63–73. [Google Scholar] [CrossRef]
- Contreras-Gutierrez, P.K.; Medina-Rodríguez, S.; Medina-Castillo, A.L.; Fernandez-Sanchez, J.F.; Fernandez-Gutierrez, A. A new highly sensitive and versatile optical sensing film for controlling CO2 in gaseous and aqueous media. Sens. Actuators B Chem. 2013, 184, 281–287. [Google Scholar] [CrossRef]
- Thomas, P.J.; Atamanchuk, D.; Hovdenes, J.; Tengberg, A. The use of novel optode sensor technologies for monitoring dissolved carbon dioxide and ammonia concentrations under live haul conditions. Aquac. Eng. 2017, 77, 89–96. [Google Scholar] [CrossRef]
- Uttamlal, M.; Walt, D.R. A Fiber-Optic Carbon Dioxide Sensor for Fermentation Monitoring. Biotechnology 1995, 13, 597–601. [Google Scholar] [CrossRef]
- Caldas, P.; Jorge, P.A.; Araujo, F.M.; Ferreira, L.A.; Marques, M.B.; Rego, G.M.; Santos, J.L. Fiber modal Michelson interferometers with coherence addressing and heterodyne interrogation. Opt. Eng. 2008, 47, 044401. [Google Scholar]
- Timmons, M.B.; Guerdat, T.; Vinci, J.B. Recirculating Aquaculture, 4th ed.; Ithaca Publishing Company LLC: Ithaca, NY, USA, 2018. [Google Scholar]
- Rao, T.N. Validation of Analytical Methods-A Sampling of Current Approaches; Intech Open: London, UK, 2018; pp. 131–141. [Google Scholar]
- Balogh, K.; Jesus, J.M.; Gouveia, C.; Domingues, J.O.; Markovics, A.; Baptista, J.M.; Kovacs, B.; Pereira, C.M.; Borges, M.-T.; Jorge, P.A.S. Characterization of a novel dissolved CO2 sensor for utilization in environmental monitoring and aquaculture industry. In Proceedings of the 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications, Porto, Portugal, 18 November 2013. [Google Scholar]
- Gerlach, G.; Guth, U.; Oelßner, W. Carbon Dioxide Sensing: Fundamentals, Principles, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2019; p. 11. [Google Scholar]
- Hu, Y.; Ni, Q.; Wu, Y.; Zhang, Y.; Guan, C. Study on CO2 removal method in recirculating aquaculture waters. Procedia Eng. 2011, 15, 4780–4789. [Google Scholar] [CrossRef] [Green Version]
- Fritzsche, E.; Staudinger, C.; Fischer, J.P.; Thar, R.; Jannasch, H.W.; Plant, J.N.; Blum, M.; Massion, G.; Thomas, H.; Hoech, J.; et al. A validation and comparison study of new, compact, versatile optodes for oxygen, pH and carbon dioxide in marine environments. Mar. Chem. 2018, 207, 63–76. [Google Scholar] [CrossRef]
- Neurauter, G.; Klimant, I.; Wolfbeis, O.S. Microsecond lifetime-based optical carbon dioxide sensor using luminescense resonance energy transfer. Anal. Chim. Acta 1999, 382, 67–75. [Google Scholar] [CrossRef]
- de Sansalvador, I.M.P.; Ruiz, N.L.; Erenas, M.M.; Vallvey, L.F.C.; Coleman, S.; Diamond, D.; Ramos, M.D.F. Fernandez Ramos, Towards an autonomous microfluidic sensor for dissolved carbon dioxide determination. Microchem. J. 2018, 139, 216–221. [Google Scholar] [CrossRef] [Green Version]
Calibration y = a + bx | Intercept (a) | Slope (b) | Pearson’s | R-Square | Adj. R-Square | LOD (mg·L−1) | LOQ (mg·L−1) |
---|---|---|---|---|---|---|---|
Deionized water | 0.666 ± 0.008 | 0.271 ± 0.009 | 0.996 | 0.992 | 0.991 | 1.225 | 1.843 |
Saline water (2.5%) | 0.501 ± 0.013 | 0.405 ± 0.014 | 0.996 | 0.992 | 0.991 | 1.048 | 1.154 |
[dCO2] (mg·L−1) | Deionized Water (0%) | Saline Water (2.5%) | ||||
---|---|---|---|---|---|---|
M.C. 1 (mg·L−1) | P 2 (CV%) | |Acc| 3 (mg·L−1) | M.C. (mg·L−1) | P (CV%) | |Acc| (mg·L−1) | |
1.00 | 1.14 ± 0.10 | 5.87 | 0.14 ± 0.07 | 1.13 ± 0.01 | 1.19 | 0.13 ± 0.01 |
2.99 | 2.77 ± 0.14 | 5.15 | 0.08 ± 0.05 | 2.81 ± 0.03 | 1.00 | 0.06 ± 0.01 |
4.99 | 4.56 ± 0.34 | 7.52 | 0.09 ± 0.07 | 4.58 ± 0.07 | 1.50 | 0.08 ± 0.01 |
6.98 | 6.47 ± 0.62 | 9.56 | 0.09 ± 0.06 | 6.49 ± 0.09 | 1.51 | 0.07 ± 0.01 |
8.97 | 8.61 ± 0.88 | 10.2 | 0.09 ± 0.03 | 8.41 ± 0.11 | 1.31 | 0.06 ± 0.01 |
10.9 | 11.1 ± 1.7 | 15.1 | 0.11 ± 0.10 | 10.7 ± 0.2 | 2.70 | 0.02 ± 0.02 |
12.9 | 13.5 ± 2.2 | 15.9 | 0.11 ± 0.11 | 13.1 ± 0.2 | 1.51 | 0.02 ± 0.01 |
14.9 | 16.1 ± 3.2 | 19.8 | 0.11 ± 0.11 | 15.6 ± 0.4 | 2.62 | 0.05 ± 0.03 |
19.8 | 22.2 ± 4.2 | 19.1 | 0.14 ± 0.19 | 22.6 ± 0.3 | 1.43 | 0.14 ± 0.02 |
[dCO2]final (mg·L−1) | M.C. 1 (mg·L−1) | |Acc| 2 (mg·L−1) | Response Time (s) |
---|---|---|---|
1.25 | 1.39 | 0.56 | 103 |
1.50 | 1.55 | 0.11 | 152 |
2.75 | 1.76 | 0.01 | 137 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, J.P.; Coelho, L.; Kovacs, B.; Almeida, J.M.M.M.d.; Pereira, C.M.; Jorge, P.A.S.; Borges, M.T. Dissolved Carbon Dioxide Sensing Platform for Freshwater and Saline Water Applications: Characterization and Validation in Aquaculture Environments. Sensors 2019, 19, 5513. https://doi.org/10.3390/s19245513
Mendes JP, Coelho L, Kovacs B, Almeida JMMMd, Pereira CM, Jorge PAS, Borges MT. Dissolved Carbon Dioxide Sensing Platform for Freshwater and Saline Water Applications: Characterization and Validation in Aquaculture Environments. Sensors. 2019; 19(24):5513. https://doi.org/10.3390/s19245513
Chicago/Turabian StyleMendes, J.P., L. Coelho, B. Kovacs, J.M.M.M. de Almeida, C.M. Pereira, P.A.S. Jorge, and M.T. Borges. 2019. "Dissolved Carbon Dioxide Sensing Platform for Freshwater and Saline Water Applications: Characterization and Validation in Aquaculture Environments" Sensors 19, no. 24: 5513. https://doi.org/10.3390/s19245513
APA StyleMendes, J. P., Coelho, L., Kovacs, B., Almeida, J. M. M. M. d., Pereira, C. M., Jorge, P. A. S., & Borges, M. T. (2019). Dissolved Carbon Dioxide Sensing Platform for Freshwater and Saline Water Applications: Characterization and Validation in Aquaculture Environments. Sensors, 19(24), 5513. https://doi.org/10.3390/s19245513