Experimental and Numerical Investigation of Dustfall Effect on Remote Sensing Retrieval Accuracy of Chlorophyll Content †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection and Spectra Measurement
2.2. Determining Dustfall Effect on Chlorophyll Content Retrieval Accuracy Based on Experiment
2.3. Relationship between Dustfall Coverage and Dustfall Amount for Dusty Leaf Spectral Simulation
2.4. Quantitative Change Analysis of VIs for Different Dustfall and Chlorophyll Levels Based on Spectral Simulation
3. Results
3.1. Dustfall Effect on Chlorophyll Content Retrieval Accuracy Based on Experiment
3.2. Accuracy Analysis of Simulated Spectra by PROSPECT-Based Mixture Model
3.2.1. Relationship between Dustfall Coverage and Dustfall Amount
3.2.2. Accuracy Analysis of Simulated Spectra
3.3. VIs Change Under Different Levels of Dustfall Amount and Chlorophyll Content Based on Simulation
4. Discussion
4.1. Leaf Chlorophyll Content Retrieval Accuracy
4.2. Attempt to Improve Retrieval Accuracy by Correcting MTCI
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stachiw, S.; Bicalho, B.; Grant-Weaver, I.; Noernberg, T.; Shotyk, W. Trace elements in berries collected near upgraders and open pit mines in the Athabasca Bituminous Sands Region (ABSR): Distinguishing atmospheric dust deposition from plant uptake. Sci. Total Environ. 2019, 670, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Lin, B.Q. Energy Conservation and Emission Reduction of Chinese Cement Industry: From a Perspective of Factor Substitutions. Emerg. Mark. Financ. Trade 2019, 55, 967–979. [Google Scholar] [CrossRef]
- Stovern, M.; Guzman, H.; Rine, K.P.; Felix, O.; King, M.; Ela, W.P.; Betterton, E.A.; Saez, A.E. Windblown Dust Deposition Forecasting and Spread of Contamination around Mine Tailings. Atmosphere 2016, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prospero, J.M. Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. J. Geophys. Res. Atmos. 1999, 104, 15917–15927. [Google Scholar] [CrossRef] [Green Version]
- de Longueville, F.; Hountondji, Y.C.; Ozer, P.; Marticorena, B.; Chatenet, B.; Henry, S. Saharan Dust Impacts on Air Quality: What Are the Potential Health Risks in West Africa? Hum. Ecol. Risk Assess. 2013, 19, 1595–1617. [Google Scholar] [CrossRef]
- Mahowald, N.; Albani, S.; Kok, J.F.; Engelstaeder, S.; Scanza, R.; Ward, D.S.; Flanner, M.G. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 2014, 15, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.L.; Tegen, I. Climate response to soil dust aerosols. J. Clim. 1998, 11, 3247–3267. [Google Scholar] [CrossRef]
- Oduber, F.; Calvo, A.I.; Blanco-Alegre, C.; Castro, A.; Nunes, T.; Alves, C.; Sorribas, M.; Feraandez-Gonzalez, D.; Vega-Maray, A.M.; Valencia-Barrera, R.M.; et al. Unusual winter Saharan dust intrusions at Northwest Spain: Air quality, radiative and health impacts. Sci. Total Environ. 2019, 669, 213–228. [Google Scholar] [CrossRef]
- Li, K.X.; Liang, T.; Wang, L.Q.; Yang, Z.P. Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China. J. Geogr. Sci. 2015, 25, 1439–1451. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.D.; Pu, R.L.; Wu, L.X.; Zhang, S. Vegetation Index Differencing for Estimating Foliar Dust in an Ultra-Low-Grade Magnetite Mining Area Using Landsat Imagery. IEEE Access 2017, 5, 8825–8834. [Google Scholar] [CrossRef]
- Zong, Y.T.; Xiao, Q.; Lu, S.G. Magnetic signature and source identification of heavy metal contamination in urban soils of steel industrial city, Northeast China. J. Soils Sediments 2017, 17, 190–203. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Viana, M.; Querol, X.; Alastuey, A.; Moreno, T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 2009, 43, 1650–1659. [Google Scholar] [CrossRef]
- Zender, C.S.; Bian, H.S.; Newman, D. Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res. Atmos. 2003, 108, 19. [Google Scholar] [CrossRef] [Green Version]
- Lovett, G.M.; Traynor, M.M.; Pouyat, R.V.; Carreiro, M.M.; Zhu, W.X.; Baxter, J.W. Atmospheric deposition to oak forests along an urban-rural gradient. Environ. Sci. Technol. 2000, 34, 4294–4300. [Google Scholar] [CrossRef]
- Imeson, A.C.; Prinsen, H.A.M. Vegetation patterns as biological indicators for identifying runoff and sediment source and sink areas for semi-arid landscapes in Spain. Agric. Ecosyst. Environ. 2004, 104, 333–342. [Google Scholar] [CrossRef]
- Kooistra, L.; Salas, E.A.L.; Clevers, J.; Wehrens, R.; Leuven, R.; Nienhuis, P.H.; Buydens, L.M.C. Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environ. Pollut. 2004, 127, 281–290. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.J.; Chen, D.Y.; Cosh, M.; Li, F.Q.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- Xie, Y.C.; Sha, Z.Y.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Ren, Z.B.; Du, Y.X.; He, X.Y.; Pu, R.L.; Zheng, H.F.; Hu, H.D. Spatiotemporal pattern of urban forest leaf area index in response to rapid urbanization and urban greening. J. For. Res. 2018, 29, 785–796. [Google Scholar] [CrossRef]
- Kalacska, M.; Lalonde, M.; Moore, T.R. Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image. Remote Sens. Environ. 2015, 169, 270–279. [Google Scholar] [CrossRef]
- Garg, H.; Loughlin, P.C.; Willows, R.D.; Chen, M. The C2(1)-formyl group in chlorophyll f originates from molecular oxygen. J. Biol. Chem. 2017, 292, 19279–19289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanbrabant, Y.; Tits, L.; Delalieux, S.; Pauly, K.; Verjans, W.; Somers, B. Multitemporal Chlorophyll Mapping in Pome Fruit Orchards from Remotely Piloted Aircraft Systems. Remote Sens. 2019, 11, 1468. [Google Scholar] [CrossRef] [Green Version]
- Croft, H.; Chen, J.M.; Zhang, Y. The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecol. Complex. 2014, 17, 119–130. [Google Scholar] [CrossRef]
- Heiskanen, J.; Rautiainen, M.; Stenberg, P.; Mottus, M.; Vesanto, V.H. Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition. ISPRS J. Photogramm. Remote Sens. 2013, 78, 1–14. [Google Scholar] [CrossRef]
- Le Maire, G.; Francois, C.; Dufrene, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Chen, J.M.; Miller, J.R.; Noland, T.L. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sens. Environ. 2008, 112, 3234–3247. [Google Scholar] [CrossRef]
- Ackerman, D.E.; Finlay, J.C. Road dust biases NDVI and alters edaphic properties in Alaskan arctic tundra. Sci. Rep. 2019, 9, 214. [Google Scholar] [CrossRef]
- Lyon, R.J.P. Effects of weathering, desert-varnish, etc. on spectral signatures of mafic, ultramafic and felsic rocks, Leonora, West Australia. In Proceedings of the 10th Annual International Symposium on Geoscience and Remote Sensing, College Park, MD, USA, 20–24 May 1990. [Google Scholar]
- Metelka, V.; Baratoux, L.; Jessell, M.W.; Naba, S. Visible and infrared properties of unaltered to weathered rocks from Precambrian granite-greenstone terrains of the West African Craton. J. Afr. Earth Sci. 2015, 112, 570–585. [Google Scholar] [CrossRef]
- Sun, T.T.; Lin, W.P.; Li, Y.; Guo, P.P.; Ying, Z. Effect of Different Dust Weight Levels on Unban Canopy Reflectance Spectroscopy. Spectrosc. Spectr. Anal. 2017, 37, 2539–2545. [Google Scholar]
- Saaroni, H.; Chudnovsky, A.; Ben-Dor, E. Reflectance spectroscopy is an effective tool for monitoring soot pollution in an urban suburb. Sci. Total Environ. 2010, 408, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Xiang, H.Y.; Wang, J.Q.; Ji, W.J.; Liu, W.Y.; Chi, C.M.; Zuo, T.G. Quantitative model of foliar dustfall content using hyperspectral remote sensing. J. Infrared Millim. Waves 2013, 32, 313–318+343. [Google Scholar] [CrossRef]
- Yan, X.; Shi, W.; Zhao, W.; Luo, N. Mapping dustfall distribution in urban areas using remote sensing and ground spectral data. Sci. Total Environ. 2015, 506, 604–612. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Wu, H.-Y.; Zuo, Y.-M. Influence of Foliar Dust on Crop Reflectance Spectrum and Nitrogen Monitoring. Spectrosc. Spectr. Anal. 2012, 32, 1895–1898. [Google Scholar]
- Lin, W.P.; Li, Y.; Du, S.Q.; Zheng, Y.F.; Gao, J.; Sun, T.T. Effect of dust deposition on spectrum-based estimation of leaf water content in urban plant. Ecol. Indic. 2019, 104, 41–47. [Google Scholar] [CrossRef]
- Brackx, M.; Wittenberghe, S.; Verhelst, J.; Scheunders, P.; Samson, R. Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation. Environ. Pollut. 2017, 220, 159–167. [Google Scholar] [CrossRef]
- Chen, F.-T.; Zhao, W.-J.; Yan, X. The Study Based on Rectification of Vegetation Indices with Dust Impact. Spectrosc. Spectr. Anal. 2015, 35, 2830–2835. [Google Scholar]
- Zajec, L.; Gradinjan, D.; Klancnik, K.; Gaberscik, A. Limestone dust alters the optical properties and traits of Fagus sylvatica leaves. Trees Struct. Funct. 2016, 30, 2143–2152. [Google Scholar] [CrossRef]
- Datt, B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a + b, and total carotenoid content in eucalyptus leaves. Remote Sens. Environ. 1998, 66, 111–121. [Google Scholar] [CrossRef]
- de Jong, S.M.; Addink, E.A.; Hoogenboom, P.; Nijland, W. The spectral response of Buxus sempervirens to different types of environmental stress—A laboratory experiment. ISPRS J. Photogramm. Remote Sens. 2012, 74, 56–65. [Google Scholar] [CrossRef]
- Chen, H.Y.; Huang, W.J.; Li, W.; Niu, Z.; Zhang, L.M.; Xing, S.H. Estimation of LAI in Winter Wheat from Multi-Angular Hyperspectral VNIR Data: Effects of View Angles and Plant Architecture. Remote Sens. 2018, 10, 1630. [Google Scholar] [CrossRef] [Green Version]
- Jacquemoud, S.; Ustin, S.L.; Verdebout, J.; Schmuck, G.; Andreoli, G.; Hosgood, B. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens. Environ. 1996, 56, 194–202. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef] [Green Version]
- Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 2007, 91, 37–46. [Google Scholar] [CrossRef]
- Yamamoto, A.; Nakamura, T.; Adu-Gyamfi, J.J.; Saigusa, M. Relationship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502). J. Plant Nutr. 2002, 25, 2295–2301. [Google Scholar] [CrossRef]
- Liu, L.; Mishchenko, M.I. Scattering and radiative properties of complex soot and soot-containing aggregate particles. J. Quant. Spectrosc. Radiat. Transf. 2007, 106, 262–273. [Google Scholar] [CrossRef]
Formula | Reference | |
---|---|---|
MTCI | (R749 – R709)/(R709 – R680) | [44] |
DD | (R749 – R720) – (R700 – R671) | [26] |
VI | Regression Equation | R2 |
---|---|---|
MTCI | y = 23.932lnx + 28.285 | 0.919 (p < 0.01) |
DD | y = 31.095e0.040x | 0.951 (p < 0.01) |
Chlorophyll Content | Fitting Equation | R2 |
60 μg/cm2 | fx = 0.00006x2 – 0.0036x + 1.0421 | 0.981 (p < 0.01) |
90 μg/cm2 | fx = 0.0002x2 – 0.0112x+ 1.1798 | 0.982 (p < 0.01) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, B.; Li, X.; Liang, A.; Chen, Y.; Che, D. Experimental and Numerical Investigation of Dustfall Effect on Remote Sensing Retrieval Accuracy of Chlorophyll Content. Sensors 2019, 19, 5530. https://doi.org/10.3390/s19245530
Ma B, Li X, Liang A, Chen Y, Che D. Experimental and Numerical Investigation of Dustfall Effect on Remote Sensing Retrieval Accuracy of Chlorophyll Content. Sensors. 2019; 19(24):5530. https://doi.org/10.3390/s19245530
Chicago/Turabian StyleMa, Baodong, Xuexin Li, Aiman Liang, Yuteng Chen, and Defu Che. 2019. "Experimental and Numerical Investigation of Dustfall Effect on Remote Sensing Retrieval Accuracy of Chlorophyll Content" Sensors 19, no. 24: 5530. https://doi.org/10.3390/s19245530
APA StyleMa, B., Li, X., Liang, A., Chen, Y., & Che, D. (2019). Experimental and Numerical Investigation of Dustfall Effect on Remote Sensing Retrieval Accuracy of Chlorophyll Content. Sensors, 19(24), 5530. https://doi.org/10.3390/s19245530