Exploring Risk of Falls and Dynamic Unbalance in Cerebellar Ataxia by Inertial Sensor Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Gait Analysis
2.3. Task Description
2.4. Inertial Sensor Data Processing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Serrao, M.; Pierelli, F.; Ranavolo, A.; Draicchio, F.; Conte, C.; Don, R.; Di Fabio, R.; LeRose, M.; Padua, L.; Sandrini, G.; et al. Gait pattern in inherited cerebellar ataxias. Cerebellum Lond. Engl. 2012, 11, 194–211. [Google Scholar] [CrossRef] [PubMed]
- Serrao, M.; Ranavolo, A.; Casali, C. Neurophysiology of gait. Handb. Clin. Neurol. 2018, 154, 299–303. [Google Scholar] [PubMed]
- Chini, G.; Ranavolo, A.; Draicchio, F.; Casali, C.; Conte, C.; Martino, G.; Leonardi, L.; Padua, L.; Coppola, G.; Pierelli, F.; et al. Local Stability of the Trunk in Patients with Degenerative Cerebellar Ataxia During Walking. Cerebellum Lond. Engl. 2017, 16, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Hoogkamer, W.; Bruijn, S.M.; Sunaert, S.; Swinnen, S.P.; Van Calenbergh, F.; Duysens, J. Toward new sensitive measures to evaluate gait stability in focal cerebellar lesion patients. Gait Posture 2015, 41, 592–596. [Google Scholar] [CrossRef]
- Conte, C.; Pierelli, F.; Casali, C.; Ranavolo, A.; Draicchio, F.; Martino, G.; Harfoush, M.; Padua, L.; Coppola, G.; Sandrini, G.; et al. Upper body kinematics in patients with cerebellar ataxia. Cerebellum Lond. Engl. 2014, 13, 689–697. [Google Scholar] [CrossRef]
- Schniepp, R.; Wuehr, M.; Schlick, C.; Huth, S.; Pradhan, C.; Dieterich, M.; Brandt, T.; Jahn, K. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J. Neurol. 2014, 261, 213–223. [Google Scholar] [CrossRef]
- Schniepp, R.; Schlick, C.; Pradhan, C.; Dieterich, M.; Brandt, T.; Jahn, K.; Wuehr, M. The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia. J. Neurol. 2016, 263, 1409–1417. [Google Scholar] [CrossRef]
- Dingwell, J.B.; Marin, L.C. Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J. Biomech. 2006, 39, 444–452. [Google Scholar] [CrossRef]
- Terrier, P.; Dériaz, O. Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking. J. Neuroeng. Rehabil. 2011, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- England, S.A.; Granata, K.P. The influence of gait speed on local dynamic stability of walking. Gait Posture 2007, 25, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Nomura, T.; Sato, S. Phase-dependent response during human locomotion to impulsive perturbation and its interpretation based on neural mechanism. Jpn. J. Med. Electron. Biol. Eng. 2000, 38, 20–32. [Google Scholar]
- Nessler, J.A.; Spargo, T.; Craig-Jones, A.; Milton, J.G. Phase resetting behavior in human gait is influenced by treadmill walking speed. Gait Posture 2016, 43, 187–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomura, T.; Kawa, K.; Suzuki, Y.; Nakanishi, M.; Yamasaki, T. Dynamic stability and phase resetting during biped gait. Chaos Woodbury N 2009, 19, 026103. [Google Scholar] [CrossRef] [PubMed]
- Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture 2003, 18, 35–46. [Google Scholar] [CrossRef]
- Bruijn, S.M.; Meijer, O.G.; van Dieën, J.H.; Kingma, I.; Lamoth, C.J.C. Coordination of leg swing, thorax rotations, and pelvis rotations during gait: The organisation of total body angular momentum. Gait Posture 2008, 27, 455–462. [Google Scholar] [CrossRef]
- Caliandro, P.; Iacovelli, C.; Conte, C.; Simbolotti, C.; Rossini, P.M.; Padua, L.; Casali, C.; Pierelli, F.; Reale, G.; Serrao, M. Trunk-lower limb coordination pattern during gait in patients with ataxia. Gait Posture 2017, 57, 252–257. [Google Scholar] [CrossRef]
- Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors 2017, 17, 1257. [Google Scholar] [CrossRef] [Green Version]
- Picerno, P. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches. Gait Posture 2017, 51, 239–246. [Google Scholar] [CrossRef]
- Iosa, M.; Picerno, P.; Paolucci, S.; Morone, G. Wearable inertial sensors for human movement analysis. Expert Rev. Med. Devices 2016, 13, 641–659. [Google Scholar] [CrossRef]
- Buckley, C.; Galna, B.; Rochester, L.; Mazzà, C. Upper body accelerations as a biomarker of gait impairment in the early stages of Parkinson’s disease. Gait Posture 2019, 71, 289–295. [Google Scholar] [CrossRef]
- Beck, Y.; Herman, T.; Brozgol, M.; Giladi, N.; Mirelman, A.; Hausdorff, J.M. SPARC: A new approach to quantifying gait smoothness in patients with Parkinson’s disease. J. Neuroeng. Rehabil. 2018, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Pau, M.; Mandaresu, S.; Pilloni, G.; Porta, M.; Coghe, G.; Marrosu, M.G.; Cocco, E. Smoothness of gait detects early alterations of walking in persons with multiple sclerosis without disability. Gait Posture 2017, 58, 307–309. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Hübsch, T.; du Montcel, S.T.; Baliko, L.; Berciano, J.; Boesch, S.; Depondt, C.; Giunti, P.; Globas, C.; Infante, J.; Kang, J.-S.; et al. Scale for the assessment and rating of ataxia: Development of a new clinical scale. Neurology 2006, 66, 1717–1720. [Google Scholar] [CrossRef] [PubMed]
- Trouillas, P.; Takayanagi, T.; Hallett, M.; Currier, R.D.; Subramony, S.H.; Wessel, K.; Bryer, A.; Diener, H.C.; Massaquoi, S.; Gomez, C.M.; et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J. Neurol. Sci. 1997, 145, 205–211. [Google Scholar] [CrossRef]
- Gage, H. Accelerographic Analysis of Human Gait; American Society for Mechanical Engineers: Washington, DC, USA, 1964. [Google Scholar]
- Smidt, G.L. Methods of studying gait. Phys. Ther. 1974, 54, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, W. Assessment of spatio-temporal parameters during unconstrained walking. Eur. J. Appl. Physiol. 2004, 92, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Lang, T. Statistical Analyses and Methods in the Published Literature: The SAMPL Guidelines. In Guidelines for Reporting Health Research: A Users’ Manual, 1st ed.; Moher, D., Altman, D., Schulz, K., Simera, I., Wager, L., Eds.; John Wiley & Sons, Ltd.: The Atrium, Southern Gate, Chichester, PO19 8SQ, UK, 2014. [Google Scholar]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Grossman, G.E.; Leigh, R.J.; Abel, L.A.; Lanska, D.J.; Thurston, S.E. Frequency and velocity of rotational head perturbations during locomotion. Exp. Brain Res. 1988, 70, 470–476. [Google Scholar] [CrossRef]
- Hirasaki, E.; Moore, S.T.; Raphan, T.; Cohen, B. Effects of walking velocity on vertical head and body movements during locomotion. Exp. Brain Res. 1999, 127, 117–130. [Google Scholar] [CrossRef]
- Pozzo, T.; Berthoz, A.; Lefort, L. Head stabilization during various locomotor tasks in humans. Exp. Brain Res. 1990, 82, 97–106. [Google Scholar] [CrossRef]
- Prince, F.; Winter, D.; Stergiou, P.; Walt, S. Anticipatory control of upper body balance during human locomotion. Gait Posture 1994, 2, 19–25. [Google Scholar] [CrossRef]
- Winter, D.A.; Mcfadyen, B.J.; Dickey, J.P. Adaptability of the CNS in Human Walking. Adv. Psychol. 1991, 78, 127–144. [Google Scholar]
- Gracovetsky, S. An hypothesis for the role of the spine in human locomotion: A challenge to current thinking. J. Biomed. Eng. 1985, 7, 205–216. [Google Scholar] [CrossRef]
- Lowry, K.A.; Lokenvitz, N.; Smiley-Oyen, A.L. Age- and speed-related differences in harmonic ratios during walking. Gait Posture 2012, 35, 272–276. [Google Scholar] [CrossRef]
- Latt, M.D.; Menz, H.B.; Fung, V.S.; Lord, S.R. Walking speed, cadence and step length are selected to optimize the stability of head and pelvis accelerations. Exp. Brain Res. 2008, 184, 201–209. [Google Scholar] [CrossRef]
- Latt, M.D.; Menz, H.B.; Fung, V.S.; Lord, S.R. Acceleration patterns of the head and pelvis during gait in older people with Parkinson’s disease: A comparison of fallers and nonfallers. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 700–706. [Google Scholar] [CrossRef] [Green Version]
- Doi, T.; Hirata, S.; Ono, R.; Tsutsumimoto, K.; Misu, S.; Ando, H. The harmonic ratio of trunk acceleration predicts falling among older people: Results of a 1-year prospective study. J. Neuroeng. Rehabil. 2013, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Conway, Z.J.; Blackmore, T.; Silburn, P.A.; Cole, M.H. Dynamic balance control during stair negotiation for older adults and people with Parkinson disease. Hum. Mov. Sci. 2018, 59, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Kelley, K.; Preacher, K.J. On effect size. Psychol. Methods 2012, 17, 137–152. [Google Scholar] [CrossRef]
- Mari, S.; Serrao, M.; Casali, C.; Conte, C.; Martino, G.; Ranavolo, A.; Coppola, G.; Draicchio, F.; Padua, L.; Sandrini, G.; et al. Lower limb antagonist muscle co-activation and its relationship with gait parameters in cerebellar ataxia. Cerebellum Lond. Engl. 2014, 13, 226–236. [Google Scholar] [CrossRef]
- Serrao, M.; Chini, G.; Casali, C.; Conte, C.; Rinaldi, M.; Ranavolo, A.; Marcotulli, C.; Leonardi, L.; Fragiotta, G.; Bini, F.; et al. Progression of Gait Ataxia in Patients with Degenerative Cerebellar Disorders: A 4-Year Follow-Up Study. Cerebellum Lond. Engl. 2017, 16, 629–637. [Google Scholar] [CrossRef] [PubMed]
Number/Total | % | Mean (SD) | |
---|---|---|---|
Male | 9/17 | 52.9 | - |
Female | 8/17 | 47.1 | - |
Age (years) | - | - | 53.53 (12.12) |
Height (m) | - | - | 1.65 (0.09) |
Weight (kg) | - | - | 71.03 (12.74) |
ICARS | - | - | 24.70 (10.80) |
SARA | - | - | 12.20 (4.25) |
Disease duration (years) | - | - | 12.11 (4.52) |
Diagnosis | |||
SAOA | 9/17 | 52.9 | - |
SCA1 | 2/17 | 11.8 | - |
SCA2 | 3/17 | 17.6 | - |
SCA3 | 1/17 | 5.9 | - |
SCA8 | 1/17 | 5.9 | - |
FRDA | 1/17 | 5.9 | - |
Parameter | Patients | Controls | t | p | Cohen’s d |
---|---|---|---|---|---|
HR-AP | 1.665 ± 0.300 | 2.414 ± 0.540 | 4.964 | <0.001 | 1.714 |
HR-ML | 1.639 ± 0.282 | 2.347 ± 0.559 | 4.631 | <0.001 | 1.599 |
HR-VT | 1.694 ± 0.304 | 2.549 ± 0.715 | 4.519 | <0.001 | 1.556 |
Step length CV (%) | 21.249 ± 10.293 | 13.205 ± 6.004 | −2.720 | 0.011 | 0.955 |
Step length (m) | 0.499 ± 0.087 | 0.569 ± 0.067 | −2.382 | 0.024 | 0.112 |
Speed (m/s) | 0.939 ± 0.195 | 0.924 ± 0.239 | −0.207 | 0.838 | 0.069 |
Parameter | ICARS (R, p) | SARA (R, p) | falls/year (R, p) |
---|---|---|---|
HR-AP | −0.35, 0.24 | −0.35, 0.13 | −0.10, 0.66 |
HR-ML | −0.47, 0.10 | −0.36, 0.11 | 0.02, 0.92 |
HR-VT | −0.41, 0.88 | −0.43, 0.06 | −0.01, 0.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caliandro, P.; Conte, C.; Iacovelli, C.; Tatarelli, A.; Castiglia, S.F.; Reale, G.; Serrao, M. Exploring Risk of Falls and Dynamic Unbalance in Cerebellar Ataxia by Inertial Sensor Assessment. Sensors 2019, 19, 5571. https://doi.org/10.3390/s19245571
Caliandro P, Conte C, Iacovelli C, Tatarelli A, Castiglia SF, Reale G, Serrao M. Exploring Risk of Falls and Dynamic Unbalance in Cerebellar Ataxia by Inertial Sensor Assessment. Sensors. 2019; 19(24):5571. https://doi.org/10.3390/s19245571
Chicago/Turabian StyleCaliandro, Pietro, Carmela Conte, Chiara Iacovelli, Antonella Tatarelli, Stefano Filippo Castiglia, Giuseppe Reale, and Mariano Serrao. 2019. "Exploring Risk of Falls and Dynamic Unbalance in Cerebellar Ataxia by Inertial Sensor Assessment" Sensors 19, no. 24: 5571. https://doi.org/10.3390/s19245571
APA StyleCaliandro, P., Conte, C., Iacovelli, C., Tatarelli, A., Castiglia, S. F., Reale, G., & Serrao, M. (2019). Exploring Risk of Falls and Dynamic Unbalance in Cerebellar Ataxia by Inertial Sensor Assessment. Sensors, 19(24), 5571. https://doi.org/10.3390/s19245571