Improvement to the Carrier Transport Properties of CdZnTe Detector Using Sub-Band-Gap Light Radiation
Abstract
:1. Introduction
2. Experimental Methods and Results
2.1. Studies on the Deep-Level Defects Using TSC
2.2. Effect of Sub-Band-Gap Light Radiation on I–V Properties of CdZnTe Detectors
2.3. X-ray Irradiation Tests of CZT Detectors with Poor Counting Properties
2.4. The Effects of Infrared Light Radiation on the X-ray Detection Performance of CZT Detectors
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schlesinger, T.E.; Toney, J.E.; Yoon, H.; Lee, E.Y.; Brunett, B.A.; Franks, L.; James, R.B. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R 2001, 32, 103–189. [Google Scholar] [CrossRef]
- Takahashi, T.; Watanabe, S. Recent progress in CdTe and CdZnTe detectors. IEEE Trans. Nucl. Sci. 2002, 48, 950–959. [Google Scholar] [CrossRef]
- Eskin, J.D.; Barrett, H.H.; Barber, H.B. Signals induced in semiconductor gamma-ray imaging detectors. J. Appl. Phys. 1999, 85, 647–659. [Google Scholar] [CrossRef]
- Taguchi, K.; Iwanczyk, J.S. Single photon counting x-ray detectors in medical imaging. Med. Phys. 2013, 40, 100901. [Google Scholar] [CrossRef] [PubMed]
- Ballabriga, R.; Alozy, J.; Campbell, M. Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging. J. Instrum. 2016, 11, 01007. [Google Scholar] [CrossRef]
- Strassburg, M.; Schroeter, C.; Hackenschmied, P. CdTe/CZT under high flux irradiation. J. Instrum. 2011, 6, C01055. [Google Scholar] [CrossRef]
- Cola, A.; Farella, I.; Anni, M.; Martucci, M.C. Charge Transients by Variable Wavelength Optical Pulses in CdTe Nuclear Detectors. IEEE Trans. Nucl. Sci. 2012, 59, 1569–1574. [Google Scholar] [CrossRef]
- Grill, R.; Franc, J.; Hlídek, P.; Turkevych, I.; Belas, E.; Höschl, P. Defect-induced optical transitions in CdTe and Cd0.96Zn0.04Te. Semicond. Sci. Technol. 2002, 17, 1282. [Google Scholar] [CrossRef]
- Pekárek, J.; Dědič, V.; Franc, J.; Belas, E.; Rejhon, M.; Moravec, P.; Touš, J.; Voltr, J. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays. Sensors 2016, 16, 1591. [Google Scholar] [CrossRef]
- Jeanneret, B.; Jeckelmann, B.; Buhlmann, H.J.; Ilegems, M. Influence of infrared illumination on the accuracy of the quantizedHall resistance. IEEE Trans. Instrum. Meas. 1997, 46, 285–288. [Google Scholar] [CrossRef]
- Duff, M.C.; Washington, A.L.; Teague, L.C.; Wright, J.S.; Burger, A.; Groza, M.; Buliga, V. Use of Sub-bandgap Illumination to Improve Radiation Detector Resolution of CdZnTe. J. Electron. Mater. 2015, 44, 3207–3213. [Google Scholar] [CrossRef]
- Xu, Y.; Sellin, P.J.; Lohstroh, A.; Jie, W. Comparison of the X-ray Spectroscopy Response and Charge Transport Properties of Semi-insulating In/Al Doped CdZnTe Crystals. J. Appl. Phys. 2009, 105, 083101. [Google Scholar] [CrossRef]
- Sadrozinski, F.W.; Ely, S.; Fadeyev, V. Ultra-fast silicon detectors. Nucl. Instrum. Methods Phys. Res. A 2013, 730, 226–231. [Google Scholar] [CrossRef]
- Meuris, A.; Limousin, O.; Blondel, C. Charge sharing in CdTe pixilated detectors. Nucl. Instrum. Methods Phys. Res. 2009, 610, 294–297. [Google Scholar] [CrossRef]
- Bale, D.S.; Szeles, C. Nature of polarization in wide-bandgap semiconductor detectors under high-flux irradiation: Application to semi-insulating Cd1−xZnxTe. Phys. Rev. B 2008, 77, 035205. [Google Scholar] [CrossRef]
- Prokesch, M.; Bale, D.S.; Szeles, C. Fast High-Flux Response of CdZnTe X-ray Detectors by Optical Manipulation of Deep Level Defect Occupations. IEEE Trans. Nucl. Sci. 2010, 57, 2397–2399. [Google Scholar] [CrossRef]
- Franc, J.; Dědič, V.; Sellin, P.J. Radiation induced control of electric field in Au/CdTe/In structures. Appl. Phys. Lett. 2011, 98, 232115. [Google Scholar] [CrossRef] [Green Version]
- Turturici, A.A.; Franc, J.; Grill, R. Electric field manipulation in Al/CdTe/Pt detectors under optical perturbations. Nucl. Instrum. Methods Phys. Res. 2017, 858, 36–43. [Google Scholar] [CrossRef]
- Zha, G.; Yang, J.; Xu, L.; Feng, T.; Wang, N.; Jie, W. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe. J. Appl. Phys. 2014, 115, 043715. [Google Scholar] [CrossRef]
- Gul, R.; Bolotnikov, A.; Kim, H.K.; Rodriguez, R.; Keeter, K.; Li, Z.; Gu, G.; James, R.B. Point Defects in CdZnTe Crystals Grown by Different Techniques. J. Electron. Mater. 2011, 40, 274–279. [Google Scholar] [CrossRef]
- Veale, M.C.; Sellin, P.J.; Lohstroh, A.; Davies, A.W.; Parkin, J.; Seller, P. X-ray spectroscopy and charge transport properties of CdZnTe grown by the vertical Bridgman method. Nucl. Instrum. Methods Phys. Res. 2007, 576, 90–94. [Google Scholar] [CrossRef]
- Washington, A.L.; Teague, L.C.; Duff, M.C.; Burger, A. Wavelength dependence on the space charge collection in CdZnTe detectors. J. Appl. Phys. 2012, 111, 103–189. [Google Scholar] [CrossRef]
- Dědič, V.; Franc, J.; Rejhon, M.; Grill, R.; Zázvorka, J.; Sellin, P.J. De-polarization of a CdZnTe radiation detector by pulsed infrared light. Appl. Phys. Lett. 2015, 107, 032105. [Google Scholar] [CrossRef]
- Cola, A.; Farella, I. Electric fields and dominant carrier transport mechanisms in CdTe Schottky detectors. Appl. Phys. Lett. 2013, 102, 113502. [Google Scholar] [CrossRef]
- Uxa, Š.; Grill, R.; Belas, E. Evaluation of the mobility-lifetime product in CdTe and CdZnTe detectors by the transient-current technique. J. Appl. Phys. 2013, 114, 094511. [Google Scholar] [CrossRef]
- Xu, L.; Jie, W.; Zha, G. Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In. Appl. Phys. Lett. 2014, 104, 232109. [Google Scholar] [CrossRef]
- Fu, X.; Wang, F.-B.; Xu, L.-Y. Study on the Analytical Method of Thermally Stimulated Current Spectroscopy of CdZnTe Crystal. Spectrosc. Spectr. Anal. 2018, 38, 340–345. [Google Scholar]
T1 | T2 | T3 | T4 | T5 | |
---|---|---|---|---|---|
Trap position (activation energy) (eV) | 0.05 ± 0.01 | 0.11 ± 0.02 | 0.18 ± 0.03 | 0.43 ± 0.08 | 0.58 ± 0.1 |
Trap concentration of Figure 1a (cm−3) | (1.56 ± 0.2) × 1013 | (1.02 ± 0.1) × 1013 | (2.28 ± 0.2) × 1012 | (8.97 ± 0.9) × 1011 | (1.39 ± 0.1) × 1012 |
Trap concentration of Figure 1b (cm−3) | (2.88 ± 0.3) × 1013 | (1.85 ± 0.2) × 1013 | (3.09 ± 0.3) × 1012 | (9.41 ± 0.9) × 1012 | (2.96 ± 0.3) × 1012 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Zha, G.; Xu, L.; Jie, W. Improvement to the Carrier Transport Properties of CdZnTe Detector Using Sub-Band-Gap Light Radiation. Sensors 2019, 19, 600. https://doi.org/10.3390/s19030600
Luo X, Zha G, Xu L, Jie W. Improvement to the Carrier Transport Properties of CdZnTe Detector Using Sub-Band-Gap Light Radiation. Sensors. 2019; 19(3):600. https://doi.org/10.3390/s19030600
Chicago/Turabian StyleLuo, Xiangxiang, Gangqiang Zha, Lingyan Xu, and Wanqi Jie. 2019. "Improvement to the Carrier Transport Properties of CdZnTe Detector Using Sub-Band-Gap Light Radiation" Sensors 19, no. 3: 600. https://doi.org/10.3390/s19030600
APA StyleLuo, X., Zha, G., Xu, L., & Jie, W. (2019). Improvement to the Carrier Transport Properties of CdZnTe Detector Using Sub-Band-Gap Light Radiation. Sensors, 19(3), 600. https://doi.org/10.3390/s19030600