Occluded-Object 3D Reconstruction Using Camera Array Synthetic Aperture Imaging
Abstract
:1. Introduction
2. Related Works
3. SAI-Based Reconstruction Method
3.1. Camera Array Calibration
3.2. Synthetic Aperture Imaging
3.3. Labeling of Occluded-Region Pixels Using Synthetic Aperture Imaging and Image Matting
3.4. 3D Reconstruction of Occluded Object
Algorithm 1 3D reconstruction of occluded object with camera array using synthetic aperture imaging. |
|
4. Experimental Results
5. Performance Evaluation and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1.
Method | PSNR | SNR | RMSE | MAE |
---|---|---|---|---|
PMVS | 17.56 | 9.54 | 34.30 | 4.47 |
Ours | 23.84 | 11.4 | 18.76 | 0.83 |
References
- Agarwal, S.; Snavely, N.; Simon, I.; Seitz, S.M.; Szeliski, R. Building Rome in a day. In Proceedings of the International Conference on Computer Vision (ICCV 2009), Kyoto, Japan, 29 September–2 October 2009; pp. 72–79. [Google Scholar] [CrossRef]
- Frahm, J.M.; Fite-Georgel, P.; Gallup, D.; Johnson, T.; Raguram, R.; Wu, C.; Jen, Y.-H.; Dunn, E.; Clipp, B.; Pollefeys, M.; et al. Building Rome on a Cloudless Day. In Proceedings of the European conference on computer vision (ECCV 2010), Crete, Greece, 5–11 September 2010; pp. 368–381. [Google Scholar] [CrossRef]
- Wu, C. Towards Linear-Time Incremental Structure from Motion. In Proceedings of the International Conference on 3D Vision, Lyon, France, 29 June–1 July 2013; pp. 127–134. [Google Scholar]
- Schonberger, J.L.; Radenovic, F.; Chum, O.; Frahm, J.M. From single image query to detailed 3D reconstruction. In Proceedings of the Computer Vision and Pattern Recognition (CVPR 2015), Boston, MA, USA, 7–12 Jun 2015; pp. 5126–5134. [Google Scholar] [CrossRef]
- Radenovic, F.; Schonberger, J.L.; Ji, D.; Frahm, J.M.; Chum, O.; Matas, J. From Dusk Till Dawn: Modeling in the Dark. In Proceedings of the Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27–30 June 2016; pp. 5488–5496. [Google Scholar]
- Heinly, J.; Schonberger, J.L.; Dunn, E.; Frahm, J.M. Reconstructing the world in six days. In Proceedings of the Computer Vision and Pattern Recognition (CVPR 2015), Boston, MA, USA, 7–12 Jun 2015; pp. 3287–3295. [Google Scholar] [CrossRef]
- Vaish, V.; Wilburn, B.; Joshi, N.; Levoy, M. Using plane + parallax for calibrating dense camera arrays. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, USA, 27 June–2 July 2004; pp. 2–9. [Google Scholar] [CrossRef]
- Vaish, V.; Garg, G.; Talvala, E.V.; Antunez, E.; Wilburn, B.; Horowitz, M.; Levoy, M. Synthetic Aperture Focusing using a Shear-Warp Factorization of the Viewing Transform. In Proceedings of the Computer Vision and Pattern Recognition (CVPR Workshops 2005), San Diego, CA, USA, 21–23 September 2005. [Google Scholar] [CrossRef]
- Pei, Z.; Zhang, Y.; Yang, T.; Chen, X. A novel method for detecting occluded object by multiple camera arrays. In Proceedings of the International Conference on Fuzzy Systems and Knowledge Discovery, Chongqing, China, 29–31 May 2012; pp. 1673–1677. [Google Scholar] [CrossRef]
- Pei, Z.; Zhang, Y.; Yang, T.; Zhang, X.; Yang, Y.H. A novel multi-object detection method in complex scene using synthetic aperture imaging. Pattern Recognit. 2012, 45, 1637–1658. [Google Scholar] [CrossRef]
- Whiting, E.; Ouf, N.; Makatura, L.; Mousas, C.; Shu, Z.; Kavan, L. Environment-Scale Fabrication. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 1794–1804. [Google Scholar] [CrossRef]
- Qian, Y.; Zheng, Y.; Gong, M.; Yang, Y.H. Simultaneous 3D Reconstruction for Water Surface and Underwater Scene. In Proceedings of the European conference on computer vision (ECCV 2018), Munich, Germany, 8–14 September 2018; pp. 776–792. [Google Scholar] [CrossRef]
- Xu, X.; Che, R.; Nian, R.; He, B.; Chen, M.; Lendasse, A. Underwater 3D object reconstruction with multiple views in video stream via structure from motion. In Proceedings of the OCEANS, Shanghai, China, 10–13 April 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Ebner, T.; Schreer, O.; Feldmann, I. Fully automated highly accurate 3D reconstruction from multiple views. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 2528–2532. [Google Scholar] [CrossRef]
- Shen, S. Accurate Multiple View 3D Reconstruction Using Patch-Based Stereo for Large-Scale Scenes. Trans. Image Process. 2013, 22, 1901–1914. [Google Scholar] [CrossRef] [PubMed]
- Beardsley, P.; Torr, P.; Zisserman, A. 3D model acquisition from extended image sequences. In Proceedings of the European Conference on Computer Vision, Cambridge, UK, 14–18 April 1996; Springer: Berlin/Heidelberg, Germany, 1996; pp. 683–695. [Google Scholar] [CrossRef]
- Mohr, R.; Veillon, F.; Quan, L. Relative 3-D reconstruction using multiple uncalibrated images. In Proceedings of the Computer Vision and Pattern Recognition (CVPR 1995), New York, NY, USA, 14 June 1995; pp. 619–632. [Google Scholar] [CrossRef]
- Fitzgibbon, A.W.; Zisserman, A. Automatic camera recovery for closed or open image sequences. In Proceedings of the European conference on computer vision (ECCV 1998), Freiburg, Germany, 2–6 June 1998; pp. 311–326. [Google Scholar]
- Dellaert, F.; Seitz, S.; Thorpe, C.; Thrun, S. Structure from motion without correspondence. In Proceedings of the Computer Vision and Pattern Recognition (CVPR 2000), Hilton Head Island, SC, USA, 15 June 2000; pp. 557–564. [Google Scholar] [CrossRef]
- Pollefeys, M.; Gool, L.V.; Vergauwen, M.; Verbiest, F.; Cornelis, K.; Tops, J.; Koch, R. Visual Modeling with a Hand-Held Camera. Int. J. Comput. Vis. 2004, 59, 207–232. [Google Scholar] [CrossRef]
- Schaffalitzky, F.; Zisserman, A. Multi-view Matching for Unordered Image Sets, or “How Do I Organize My Holiday Snaps?”. In Proceedings of the European Conference on Computer Vision (ECCV 2002), Copenhagen, Denmark, 28–31 May 2002; pp. 414–431. [Google Scholar] [CrossRef]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Photo tourism. In Proceedings of the ACM SIGGRAPH, Boston, MA, USA, 29–30 July 2006; pp. 835–846. [Google Scholar] [CrossRef]
- Pollefeys, M.; Nistér, D.; Frahm, J.M.; Akbarzadeh, A.; Mordohai, P.; Clipp, B.; Engels, C.; Gallup, D.; Kim, S.-J.; Salmi, C.; et al. Detailed Real-Time Urban 3D Reconstruction from Video. Int. J. Comput. Vis. 2007, 78, 143–167. [Google Scholar] [CrossRef] [Green Version]
- Schonberger, J.L.; Frahm, J.M. Structure-from-Motion Revisited. In Proceedings of the Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4104–4113. [Google Scholar]
- Wilburn, B.; Smulski, M.; Lee, K.; Horowitz, M.A. The Light Field Video Camera. In Proceedings of the Media Processors, San Jose, CA, USA, 19–25 January 2002; pp. 29–37. [Google Scholar]
- Zhang, C.; Chen, T. A self-reconfigurable camera array. In Proceedings of the ACM SIGGRAPH, Los Angeles, CA, USA, 8–12 August 2004; p. 151. [Google Scholar] [CrossRef]
- Joshi, N.; Avidan, S.; Matusik, W.; Kriegman, D.J. Synthetic Aperture Tracking: Tracking through Occlusions. In Proceedings of the International Conference on Computer Vision (ICCV 2007), Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Fujii, T.; Mori, K.; Takeda, K.; Mase, K.; Tanimoto, M.; Suenaga, Y. Multipoint Measuring System for Video and Sound-100-Camera and Microphone System. In Proceedings of the International Conference on Multimedia and Expo (ICME 2006), Toronto, ON, Canada, 9–12 July 2006; pp. 437–440. [Google Scholar] [CrossRef]
- Lei, C.; Chen, X.D.; Yang, Y.H. A new multiview spacetime-consistent depth recovery framework for free viewpoint video rendering. In Proceedings of the International Conference on Computer Vision (ICCV 2009), Kyoto, Japan, 29 September–2 October 2009; pp. 1570–1577. [Google Scholar] [CrossRef]
- Wilburn, B.; Joshi, N.; Vaish, V.; Levoy, M.; Horowitz, M. High-speed videography using a dense camera array. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, USA, 27 June–2 July 2004. [Google Scholar] [CrossRef]
- Wilburn, B.; Joshi, N.; Vaish, V.; Talvala, E.V.; Antunez, E.; Barth, A.; Adams, A.; Horowitz, M.; Levoy, M. High performance imaging using large camera arrays. In Proceedings of the ACM Transactions on Graphics (TOG), Los Angeles, CA, USA, 31 July–4 August 2005; pp. 765–776. [Google Scholar] [CrossRef]
- Gašparović, M.; Gajski, D. Two-step camera calibration method developed for micro UAV’s. In Proceedings of the XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; pp. 829–833. [Google Scholar]
- Pérez, M.; Agüera, F.; Carvajal, F. Digital camera calibration using images taken from an unmanned aerial vehicle. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, C22. [Google Scholar] [CrossRef]
- Pérez, M.; Agüera, F.; Carvajal, F. Low cost surveying using an unmanned aerial vehicle. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 311–315. [Google Scholar] [CrossRef]
- Do, C.M.; Javidi, B. 3D Integral Imaging Reconstruction of Occluded Objects Using Independent Component Analysis-Based K-Means Clustering. J. Disp. Technol. 2010, 6, 257–262. [Google Scholar] [CrossRef]
- Pei, Z.; Chen, X.; Yang, Y.H. All-In-Focus Synthetic Aperture Imaging Using Image Matting. Trans. Circuits Syst. Video Technol. 2018, 28, 288–301. [Google Scholar] [CrossRef]
- Pei, Z.; Zhang, Y.; Chen, X.; Yang, Y.H. Synthetic aperture imaging using pixel labeling via energy minimization. Pattern Recognit. 2013, 46, 174–187. [Google Scholar] [CrossRef]
- Pei, Z.; Zhang, Y.; Yang, T.; Chen, X. Synthetic aperture image quality assessment based on camera array: Measures and their performance. In Proceedings of the International Conference on Fuzzy Systems and Knowledge Discovery, Chongqing, China, 29–31 May 2012; pp. 1967–1971. [Google Scholar] [CrossRef]
- Seitz, S.; Dyer, C. Photorealistic scene reconstruction by voxel coloring. In Proceedings of the Computer Vision and Pattern Recognition (CVPR 1997), San Juan, Puerto Rico, 17–19 June 1997. [Google Scholar] [CrossRef]
- Kutulakos, K.; Seitz, S. A theory of shape by space carving. In Proceedings of the Seventh International Conference on Computer Vision (ICCV 1999), Kerkyra, Greece, 20–27 September 1999; pp. 199–218. [Google Scholar] [CrossRef]
- Gastal, E.S.L.; Oliveira, M.M. Shared Sampling for Real-Time Alpha Matting. Comput. Graph. Forum 2010, 29, 575–584. [Google Scholar] [CrossRef]
- Jurjević, L.; Gašparović, M. 3D Data Acquisition Based on OpenCV for Close-Range Photogrammetry Applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-1/W1, 377–382. [Google Scholar] [CrossRef]
- Sapirstein, P. Accurate measurement with photogrammetry at large sites. J. Archaeol. Sci. 2016, 66, 137–145. [Google Scholar] [CrossRef]
- Stöcker, C.; Eltner, A.; Karrasch, P. Measuring gullies by synergetic application of UAV and close range photogrammetry—A case study from Andalusia, Spain. Catena 2015, 132, 1–11. [Google Scholar] [CrossRef]
- Moulon, P.; Monasse, P.; Marlet, R. Adaptive Structure from Motion with a Contrario Model Estimation. In Proceedings of the Asian Computer Vision Conference (ACCV 2012), Daejeon, Korea, 5–9 November 2012; pp. 257–270. [Google Scholar] [CrossRef]
- Jancosek, M.; Pajdla, T. Multi-view reconstruction preserving weakly-supported surfaces. In Proceedings of the Computer Vision and Pattern Recognition (CVPR 2011), Colorado Springs, CO, USA, 20–25 June 2011; pp. 3121–3128. [Google Scholar] [CrossRef]
- Al-Najjar, Y. Comparison of Image Quality Assessment: PSNR, HVS, SSIM, UIQI. Int. J. Sci. Eng. Res. 2012, 3, 1–5. [Google Scholar]
- Gašparović, M.; Malarić, I. Increase of readability and accuracy of 3D models using fusion of close range phorogrammetry and laser scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B5, 93–98. [Google Scholar] [CrossRef]
- Gasparovic, M.; Gajski, D. Testing of Image Quality Parameters of Digital Cameras for Photogrammetric Surveying with Unmanned Aircrafts. Geodetski List 2016, 70, 253–266. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, Z.; Li, Y.; Ma, M.; Li, J.; Leng, C.; Zhang, X.; Zhang, Y. Occluded-Object 3D Reconstruction Using Camera Array Synthetic Aperture Imaging. Sensors 2019, 19, 607. https://doi.org/10.3390/s19030607
Pei Z, Li Y, Ma M, Li J, Leng C, Zhang X, Zhang Y. Occluded-Object 3D Reconstruction Using Camera Array Synthetic Aperture Imaging. Sensors. 2019; 19(3):607. https://doi.org/10.3390/s19030607
Chicago/Turabian StylePei, Zhao, Yawen Li, Miao Ma, Jun Li, Chengcai Leng, Xiaoqiang Zhang, and Yanning Zhang. 2019. "Occluded-Object 3D Reconstruction Using Camera Array Synthetic Aperture Imaging" Sensors 19, no. 3: 607. https://doi.org/10.3390/s19030607
APA StylePei, Z., Li, Y., Ma, M., Li, J., Leng, C., Zhang, X., & Zhang, Y. (2019). Occluded-Object 3D Reconstruction Using Camera Array Synthetic Aperture Imaging. Sensors, 19(3), 607. https://doi.org/10.3390/s19030607