Real-Time Monitoring of the Position and Orientation of a Radio Telescope Sub-Reflector with Fiber Bragg Grating Sensors
Abstract
:1. Introduction
2. Construction of the Measurement Model
2.1. Construction of the Inverse Finite Beam Element
2.2. Computation of the Section Strains from the Strain Measurements
2.3. Optimization of the Strain Sensor Placement
2.4. Construction of the Measurement Model in a Global Coordinate System
3. Verification of the Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pisanu, T.; Buffa, F.; Poppi, S.; Marongiu, P.; Serra, G.; Vargiu, G.P.; Concu, R. The SRT inclinometer for monitoring the rail and the thermal gradient effects on the alidade structure. In Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Montréal, QC, Canada, 22–27 June 2014; Volume 91454R. [Google Scholar]
- Ries, P.; Hunter, T.R.; Constantikes, K.T.; Brandt, J.J.; Ghigo, F.D.; Mason, B.S.; Prestage, R.M.; Ray, J.; Schwab, F.R. Measuring and Correcting Wind-Induced Pointing Errors of the Green Bank Telescope Using an Optical Quadrant Detector. Publ. Astron. Soc. Pac. 2011, 123, 682–691. [Google Scholar] [CrossRef]
- Jiang, H.; Kesteven, M.; Wilson, W.; Li, C. A distributed control system for a radio telescope with six-meter hexapod mount. In Proceedings of the IEEE International Conference on Control and Automation, Edinburgh, UK, 9–11 December 2009; pp. 2003–2010. [Google Scholar]
- Pisanu, T.; Poppi, S. Architecture of the metrology for the SRT. Proc. SPIE 2012, 8444, 84442E1-9. [Google Scholar]
- Pisanu, T.; Buffa, F.; Concu, R.; Marongiu, P.; Pili, M.; Poppi, S.; Serra, G.; Urru, E.; Vargiu, G. A PSD (position sensing device) to map the shift and tilt of the SRT secondary mirror. Proc. SPIE 2014, 9145, 91454U1-9. [Google Scholar]
- Derkevorkian, A.; Masri, S.F.; Alvarenga, J.; Boussalis, H.; Bakalyar, J.; Richards, W.L. Strain-based deformation shape-estimation algorithm for control and monitoring applications. AIAA J. 2013, 51, 2231–2240. [Google Scholar] [CrossRef]
- Pak, C. Wing shape sensing from measured strain. AIAA J. 2016, 54, 1064–1073. [Google Scholar] [CrossRef]
- Akl, W.; Poh, S.; Baz, A. Wireless and distributed sensing of the shape of morphing structures. Sens. Actuators A Phys. 2006, 140, 94–102. [Google Scholar] [CrossRef]
- Sante, R.D. Fiber optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications. Sensors 2015, 15, 18666–18713. [Google Scholar] [CrossRef] [PubMed]
- Amanzadeh, M.; Aminossadati, S.M.; Kizil, M.S.; Rakić, A.D. Recent Developments in Fiber Optic Shape Sensing. Measurement 2018, 128, 119–137. [Google Scholar] [CrossRef]
- Vorathin, E.; Hafizi, Z.M.; Ghani, S.A.C.; Lim, K.S. Real-time monitoring system of composite aircraft wings utilizing Fibre Bragg Grating sensor. IOP Conf. Ser. Mater. Sci. Eng. 2016, 152, 012024. [Google Scholar] [CrossRef]
- Ko, W.L.; Richards, W.L.; Fleischer, V.T. Applications of the Ko displacement theory to the deformed shape predictions of the doubly-tapered Ikhana wing. In NASA/TP-2009-214652; NASN Dryden Flight Research Center: Edwards, CA, USA, 2009. [Google Scholar]
- Jutte, C.V.; Ko, W.L.; Stephens, C.A.; Al, E. Deformed Shape Calculation of a Full-Scale Wing Using Fiber Optic Strain Data from a Ground Loads Test. In NASA Langley Research Center, Rept, TP-215975; NASA Langley Research Center: Hampton, VA, USA, 2011. [Google Scholar]
- Bogert, P.; Haugse, E.; Gehrki, R. Structural shape identification from experimental strains using a modal transformation technique. In Proceedings of the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, USA, 7–10 April 2003; p. 1626. [Google Scholar]
- Gherlone, M.; Cerracchio, P.; Mattone, M.; Di Sciuva, M.; Tessler, A. Shape sensing of 3D frame structures using an inverse finite element method. Int. J. Solids Struct. 2012, 49, 3100–3112. [Google Scholar] [CrossRef]
- Tessler, A.; Spangler, J.L. A variational principle for reconstruction of elastic deformations in shear deformable plates and shells. In NASA Langley Research Center TM-212445; NASA Langley Research Center: Hampton, VA, USA, 2003. [Google Scholar]
- Gherlone, M.; Cerracchio, P.; Mattone, M.; Di Sciuva, M.; Tessler, A. An inverse finite element method for beam shape sensing: Theoretical framework and experimental validation. Smart Mater. Struct. 2014, 23, 1–13. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, J.; Bao, H.; Xu, Q. Optimal Sensor Placement Based on Eigenvalues Analysis for Sensing Deformation of Wing Frame Using iFEM. Sensors 2018, 18, 2424. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Du, J.; Bao, H.; Xu, Q. Optimal Sensor Placement for Inverse Finite Element Reconstruction of Three-Dimensional Frame Deformation. Int. J. Aerospace Eng. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Gherlone, M.; Cerracchio, P.; Mattone, M. Shape sensing methods: Review and experimental comparison on a wing-shaped plate. Prog. Aerosp. Sci. 2018, 99, 14–26. [Google Scholar] [CrossRef]
- Zhao, Y.; Bao, H.; Duan, X.; Fang, H. The Application Research of Inverse Finite Element Method for Frame Deformation Estimating. Int. J. Aerosp. Eng. 2017, 2017, 1–8. [Google Scholar]
- Werneck, M.M.; Allil, R.C.S.B.; Ribeiro, B.A.; de Nazaré, F.V.B. A Guide to Fiber Bragg Grating Sensors. In Current Trends in Short-and Long-Period Fiber Gratings; INTECH: Vienna, Austria, 2013; pp. 1–24. [Google Scholar]
Description | ||
Six Strain Sensors | (−120,0), (0,0), (120,0) | (−120,0), (0,45), (120,0) |
Sensor Location | Supporting Leg 1 | Supporting Leg 2 | Supporting Leg 3 | Supporting Leg 4 |
---|---|---|---|---|
−120°,0° | 0.000079 | 0.000112 | −0.000172 | −0.000166 |
0°,45° | 0.000019 | 0.000028 | 0.000049 | 0.000053 |
120°,0° | −0.000272 | −0.00019 | 0.000132 | 0.000107 |
−120°,0° | −0.000335 | −0.000295 | 0.000263 | 0.000261 |
0°,45° | −0.000024 | −0.000015 | 0.000001 | −0.000046 |
120°,0° | 0.000429 | 0.000327 | −0.000395 | −0.000289 |
Pitch Angle | Shift in x-Direction | Shift in y-Direction | Shift in z-Direction | |
---|---|---|---|---|
30° | −0.01 mm | −0.62 mm | 0.08 mm | |
0.03 mm | −0.59 mm | 0.0 mm | ||
0.04 mm | 0.03 mm | 0.08 mm | ||
400% | 4.8% | 100% | ||
45° | −0.02 mm | −1.82 mm | 0.03 mm | |
0.05 mm | −1.73 mm | 0.01 mm | ||
0.07 mm | 0.09 mm | 0.02 mm | ||
350% | 4.9% | 66.7% | ||
60° | 0.03 mm | −2.06 mm | −0.04 mm | |
0.08 mm | −1.95 mm | −0.04 mm | ||
0.05 mm | 0.11 mm | 0.0 mm | ||
166.7% | 5.3% | 0.0% |
Pitch Angle | x-Rotation | y-Rotation | z-Rotation | |
---|---|---|---|---|
30° | 1.626° | −0.02° | 0.0° | |
1.619° | −0.013° | 0.0° | ||
0.007° | 0.007° | 0.0° | ||
0.4% | 35% | 0.0% | ||
45° | 1.722° | −0.04° | 0.21° | |
1.709° | −0.027° | 0.226° | ||
0.013° | 0.013° | 0.016° | ||
0.8% | 32.5% | 1.9% | ||
60° | 1.721° | −0.066° | 0.5° | |
1.704° | −0.048° | 0.504° | ||
0.017° | 0.018° | 0.004° | ||
0.98% | 27.3% | 0.8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Du, J.; Xu, Q.; Bao, H. Real-Time Monitoring of the Position and Orientation of a Radio Telescope Sub-Reflector with Fiber Bragg Grating Sensors. Sensors 2019, 19, 619. https://doi.org/10.3390/s19030619
Zhao Y, Du J, Xu Q, Bao H. Real-Time Monitoring of the Position and Orientation of a Radio Telescope Sub-Reflector with Fiber Bragg Grating Sensors. Sensors. 2019; 19(3):619. https://doi.org/10.3390/s19030619
Chicago/Turabian StyleZhao, Yong, Jingli Du, Qian Xu, and Hong Bao. 2019. "Real-Time Monitoring of the Position and Orientation of a Radio Telescope Sub-Reflector with Fiber Bragg Grating Sensors" Sensors 19, no. 3: 619. https://doi.org/10.3390/s19030619
APA StyleZhao, Y., Du, J., Xu, Q., & Bao, H. (2019). Real-Time Monitoring of the Position and Orientation of a Radio Telescope Sub-Reflector with Fiber Bragg Grating Sensors. Sensors, 19(3), 619. https://doi.org/10.3390/s19030619