A Nafion Film Cover to Enhance the Analytical Performance of the CuO/Cu Electrochemical Sensor for Determination of Chemical Oxygen Demand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instrumentation
2.3. Electrodes Fabrication
2.4. Analysis of Real Water Samples
3. Results and Discussion
3.1. Selection of Electrode Substrate and Modifying Substance
3.1.1. Copper as Substrate
3.1.2. Nafion as the Electrode Modifying Film
3.1.3. Modification of the Electrodes Surface
3.2. SEM Characterization of the Modified Electrode
3.3. Electroxidation of Glucose Using the CuO/Cu and CuONf/Cu Sensors
3.4. Effect of NaOH Concentration
3.5. Amperometric Detection of COD
3.6. Interference of Chloride Ions
3.7. Analytical Figures of Merit
3.8. Analytical Application
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jones, B.M.; Sakaji, R.H.; Daughton, C.G. Comparison of the microcolorimetric and macrotitrimetric methods for chemical oxygen demand of oil shale wastewater. Anal. Chem. 1985, 57, 2334–2337. [Google Scholar] [CrossRef]
- Bilanovic, D.; Loewenthal, R.E.; Avnimelech, Y.; Green, M. Potentiometric measurement of chemical oxygen demand. Water SA 1997, 23, 301. [Google Scholar]
- Moore, W.A.; Walker, W.W. Determination of low chemical oxygen demands of surface waters by dichromate oxidation. Anal. Chem. 1956, 28, 164–167. [Google Scholar] [CrossRef]
- Kong, H.; Wu, H. A rapid determination method of chemical oxygen demand in printing and dyeing wastewater using ultraviolet spectroscopy. Water Environ. Res. 2009, 81, 2381–2386. [Google Scholar] [CrossRef]
- Hur, J.; Lee, B.M.; Lee, T.H.; Park, D.H. Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra. Sensors 2010, 10, 2460–2471. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Z.; Zhang, Y. Chemiluminescence micro-flow system for rapid determination of chemical oxygen demand in water. Microchim. Acta 2008, 160, 141–146. [Google Scholar] [CrossRef]
- Yao, H.; Wu, B.; Qu, H.; Cheng, Y. A high throughput chemiluminescence method for determination of chemical oxygen demand in waters. Anal. Chim. Acta 2009, 633, 76–80. [Google Scholar] [CrossRef]
- Hassan, H.H.; Badr, I.H.; Abdel-Fatah, H.T.; Elfeky, E.M.; Abdel-Aziz, A.M. Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film. Arab. J. Chem. 2018, 11, 171–180. [Google Scholar] [CrossRef]
- Silva, C.R.; Conceicao, C.D.C.; Bonifacio, V.G.; Filho, Q.F.; Teixeira, M.F.S. Determination of the chemical oxygen demand (COD) using a copper electrode: A clean alternative method. J. Solid State Electrochem. 2009, 13, 665–669. [Google Scholar] [CrossRef]
- Zhou, Y.; Jing, T.; Hao, Q.; Zhou, Y.; Mei, S. A sensitive and environmentally friendly method for determination of chemical oxygen demand using NiCu alloy electrode. Electrochim. Acta 2012, 74, 165–170. [Google Scholar] [CrossRef]
- Jing, T.; Zhou, Y.; Hao, Q.; Zhou, Y.; Mei, S. A nano-nickel electrochemical sensor for sensitive determination of chemical oxygen demand. Anal. Methods 2012, 4, 1155–1159. [Google Scholar] [CrossRef]
- Cheng, Q.; Wu, C.; Chen, J.W.; Zhou, Y.K.; Wu, K.B. Electrochemical tuning the activity of nickel nanoparticle and application in sensitive detection of chemical oxygen demand. J. Phys. Chem. C 2011, 115, 22845–22850. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Wu, K.; Cheng, Q.; Zhou, Y. Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film. Anal. Chim. Acta 2012, 736, 55–61. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, L.; Tang, M.; Hunter, K.W.; Feng, Y.; Sun, Q.; Chen, G. A nickel nanoparticle/nafion-graphene oxide modified screen-printed electrode for amperometric determination of chemical oxygen demand. Microchim. Acta 2018, 185, 385. [Google Scholar] [CrossRef]
- Li, J.; Luo, G.; He, L.; Xu, J.; Lyu, J. Analytical approaches for determining chemical oxygen demand in water bodies: A review. Crit. Rev. Anal. Chem. 2018, 48, 47–65. [Google Scholar] [CrossRef]
- Eryuruk, K.; Un, U.T.; Ogutveren, U.B. Electrochemical treatment of wastewaters from poultry slaughtering and processing by using iron electrodes. J. Clean. Prod. 2018, 172, 1089–1095. [Google Scholar] [CrossRef]
- Klidi, N.; Clematis, D.; Delucchi, M.; Gadri, A.; Ammar, S.; Panizza, M. Applicability of electrochemical methods to paper mill wastewater for reuse. Anodic oxidation with BDD and TiRuSnO2 anodes. J. Electroanal. Chem. 2018, 815, 16–23. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Chen, X.; Shen, W.; Lutes, R. Soft-sensing modeling of chemical oxygen demand in photo-electro-catalytic oxidation treatment of papermaking wastewater. J. Bioresour. Bioprod. 2018, 3, 71–77. [Google Scholar]
- Wang, J.; Yao, N.; Li, M.; Hu, J.; Chen, J.; Hao, Q.; Zhou, Y. Electrochemical tuning of the activity and structure of a copper-cobalt micro-nano film on a gold electrode, and its application to the determination of glucose and of Chemical Oxygen Demand. Microchim. Acta 2015, 182, 515–522. [Google Scholar] [CrossRef]
- Li, J.Q.; Li, L.P.; Zheng, L.; Xian, Y.Z.; Jin, L.T. Rh2O3/Ti electrode preparation using laser anneal and its application to the determination of chemical oxygen demand. Meas. Sci. Technol. 2006, 17, 1995–2000. [Google Scholar] [CrossRef]
- Orozco, J.; Fernández-Sánchez, C.; Mendoza, E.; Baeza, M.; Céspedes, F.; Jiménez-Jorquera, C. Composite planar electrode for sensing electrochemical oxygen demand. Anal. Chim. Acta 2008, 607, 176–182. [Google Scholar] [CrossRef]
- Youqin, X.; Huber, C.O. Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste. Anal. Chem. 1991, 63, 1714–1719. [Google Scholar] [CrossRef]
- Shoesmith, D.W.; Sunder, S.; Bailey, M.G.; Wallace, G.J.; Stanchel, F.W. Anodic oxidation of copper in alkaline solutions: Part IV. Nature of the passivating film. J. Electroanal. Chem. 1983, 143, 153–165. [Google Scholar] [CrossRef]
- Droog, J.M.M.; Alderliesten, C.A.; Alderliesten, P.T.; Bootsma, G.A. Initial stages of anodic oxidation of polycrystalline copper electrodes in alkaline solution. J. Electroanal. Chem. 1980, 111, 61–70. [Google Scholar] [CrossRef]
- Holm, T.R. Treatment of Spent Chemical Oxygen Demand Solutions for Safe Disposal; Illinois State Water Survey: Champaign, IL, USA, 1996. [Google Scholar]
- Lee, K.-H.; Ishikawa, T.; McNiven, S.J.; Nomura, Y.; Hiratsuka, A.; Sasaki, S.; Arikawa, Y.; Karube, I. Evaluation of chemical oxygen demand (COD) based on coulometric determination of electrochemical oxygen demand (EOD) using a surface oxidized copper electrode. Anal. Chim. Acta 1999, 398, 161–171. [Google Scholar] [CrossRef]
- Roessler-Fromme, R.; Scholz, F. Fresenius. J. Anal. Chem. 1996, 356, 197–201. [Google Scholar]
- Luo, P.F.; Zhang, F.Z.; Baldwin, R.P. Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems. Anal. Chim. Acta 1991, 244, 169–178. [Google Scholar] [CrossRef]
- Luo, M.Z.; Baldwin, R.P. Characterization of carbohydrate oxidation at copper electrodes. J. Electroanal. Chem. 1995, 387, 87–94. [Google Scholar] [CrossRef]
- Heli, F.; Faramarzi, H.; Jabbari, A.; Parsaei, A.; Moosavi-Movahedi, A.A. Electrooxidation and determination of etidronate using copper nanoparticles and microparticles-modified carbon paste electrodes. J. Braz. Chem. Soc. 2010, 21, 16–24. [Google Scholar] [CrossRef]
- Hoyer, B.; Florence, T.M.; Batley, G.E. Application of polymer-coated glassy carbon electrodes in anodic stripping voltammetry. Anal. Chem. 1987, 59, 1608–1614. [Google Scholar] [CrossRef]
- Economou, A.; Fielden, P.R. Adsorptive stripping voltammetry on mercury film electrodes in the presence of surfactants. Analyst 1993, 118, 1399–1404. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, C.; Li, M.; Jiao, K. Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode. Talanta 2007, 71, 1769–1773. [Google Scholar] [CrossRef]
- Vyrides, I.; Stuckey, D.C. A modified method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics. Bioresour. Technol. 2009, 100, 979–982. [Google Scholar] [CrossRef]
Limit of Detection (mg·L−1) | Linear Range (mg·L−1) | Sensitivity | Tolerance Level Towards Cl− Ions | |
---|---|---|---|---|
No. 8 | 1.05 | 2–595 | 4 × 10−4 J·mg·L−1 | 0.1 mol·L−1 |
No. 9 | 20.3 | 53–2801 | 4 × 10−4 µA·mg−1·L−1 | Not reported |
No. 10 | 1.0 | 10–1533 | 0.14 µA·mg−1·L−1 | 1 mol·L−1 |
No. 11 | 1.1 | 10–1533 | 0.059 µA·mg−1·L−1 | 0.02·mol·L−1 |
No. 12 | 0.14 | 0.24–480 | 0.14 µA·mg−1·L−1 | 0.1·mol·L−1 |
No. 13 | 1.1 | 30–180 | 1.048 µA·mg−1·L−1 | 0.02·mol·L−1 |
No. 14 | 0.05 | 1–400 | 3.85 µA·mg−1·L−1 | 0.3·mol·L−1 |
No. 15 | 3.6 | 30–600 | Not reported | 2·mol·L−1 |
No. 18 | 0.05 | 1–400 | 3.85 µA·mg−1·L−1 | 0.3·mol·L−1 |
No. 19 | 0.609 | 1.92–768 | 0.08 µA·mg−1·L−1 | 0.02·mol·L−1 |
No. 20 | 20 | 50–2000 | 0.0022 µA·mg−1·L−1 | < 600·mg·L−1 |
No. 21 | 4.3 | 5–1400 | 0.252 µA·mg−1·L−1 | Not reported |
This work | 2.11 | 50–1000 | 9.17 × 10−3 µA·mg−1·L−1 | 10·mg·L−1 |
Sample | Proposed Method | Conventional Methods | Relative Error (%) | ||
---|---|---|---|---|---|
COD (mg·L−1) | RSD (%) n = 3 | COD (mg·L−1) | RSD (%) n = 3 | ||
Water from Jubones River | 22.21 | 0.22 | 24.00 | 0.09 | 7.47 |
Water from Municipal slaughterhouse | 4305 | 0.04 | 4500 | 0.03 | 4.33 |
Estuary Huayla | 1191 | 0.01 | 1500 | 0.1 | 3.09 |
Sample | COD Initial (mg·L−1) | COD Added (mg·L−1) | COD Found (mg·L−1) | Recovery (%) * |
---|---|---|---|---|
Sample 1 | 24 | 300 | 339 ± 0.3 | 104.64 ± 3.0 |
Sample 2 | 24 | 300 | 335 ± 0.2 | 103.40 ± 4.0 |
Sample 3 | 24 | 300 | 340 ± 0.6 | 104.93 ± 3.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carchi, T.; Lapo, B.; Alvarado, J.; Espinoza-Montero, P.J.; Llorca, J.; Fernández, L. A Nafion Film Cover to Enhance the Analytical Performance of the CuO/Cu Electrochemical Sensor for Determination of Chemical Oxygen Demand. Sensors 2019, 19, 669. https://doi.org/10.3390/s19030669
Carchi T, Lapo B, Alvarado J, Espinoza-Montero PJ, Llorca J, Fernández L. A Nafion Film Cover to Enhance the Analytical Performance of the CuO/Cu Electrochemical Sensor for Determination of Chemical Oxygen Demand. Sensors. 2019; 19(3):669. https://doi.org/10.3390/s19030669
Chicago/Turabian StyleCarchi, Tanya, Byron Lapo, José Alvarado, Patricio J. Espinoza-Montero, Jordi Llorca, and Lenys Fernández. 2019. "A Nafion Film Cover to Enhance the Analytical Performance of the CuO/Cu Electrochemical Sensor for Determination of Chemical Oxygen Demand" Sensors 19, no. 3: 669. https://doi.org/10.3390/s19030669
APA StyleCarchi, T., Lapo, B., Alvarado, J., Espinoza-Montero, P. J., Llorca, J., & Fernández, L. (2019). A Nafion Film Cover to Enhance the Analytical Performance of the CuO/Cu Electrochemical Sensor for Determination of Chemical Oxygen Demand. Sensors, 19(3), 669. https://doi.org/10.3390/s19030669