A Simplified SSY Estimate Method to Determine EPFM Constraint Parameter for Sensor Design †
Abstract
:1. Introduction
2. Theoretical Background
2.1. J-T and J-A Two-Parameter Approach
2.2. T-Stress-Based Estimate of Constraint Parameter A
3. Finite Element Analysis and Numerical Solution of Constraint Parameter A
3.1. Modified Boundary Layer Problem
3.2. Parameter A Numerical Solutions under SSY
4. Simplified Format of T-Stress-Based Estimate Method under Biaxial Loading
4.1. Simplified Formation of T-Stress-Based Estimate
4.2. Determining Constraint Parameter A under Biaxial Loading
4.3. Validation and Discuss
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, C.; Sánchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D. Fault diagnosis for rotating machinery using vibration measurement deep statistical feature learning. Sensors 2016, 16, 895. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cerrada, M.; Cabrera, D.; Sánchez, R.V.; Pacheco, F.; Ulutagay, G.; Valente de Oliveira, J.L. A comparison of fuzzy clustering algorithms for bearing fault diagnosis. J. Intell. Fuzzy Syst. 2018, 34, 3565–3580. [Google Scholar] [CrossRef]
- Li, C.; Valente de Oliveira, J.L.; Lozada, M.C.; Cabrera, D.; Sanchez, V.; Zurita, G. A systematic review of fuzzy formalisms for bearing fault diagnosis. IEEE Trans. Fuzzy Syst. 2018. [Google Scholar] [CrossRef]
- Hutchinson, J.W. Singular behavior at the end of a tensile crack in a hardening material. J. Mech. Phys. Solids 1968, 16, 13–31. [Google Scholar] [CrossRef]
- Rice, J.R.; Rosengren, G.F. Plane strain deformation near a crack tip in a power law hardening material. J. Mech. Phys. Solids 1968, 16, 1–12. [Google Scholar] [CrossRef]
- Rice, J.R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 1968, 35, 379–386. [Google Scholar] [CrossRef]
- Williams, M.L. On the stress distribution at the base of a stationary crack. J. Appl. Mech. 1957, 24, 109–114. [Google Scholar] [CrossRef]
- Betegon, C.; Hancock, J.W. Two parameter characterization of elastic-plastic crack-tip fields. J. Appl. Mech. 1991, 58, 104–110. [Google Scholar] [CrossRef]
- Al-Ani, A.M.; Hancock, J.W. J-dominance of short cracks in tension and bending. J. Mech. Phys. Solids 1991, 39, 23–43. [Google Scholar] [CrossRef]
- O’Dowd, N.P.; Shih, C.F. Family of crack-tip fields characterized by a triaxiality parameter–I. Structure of fields. J. Mech. Phys. Solids 1991, 39, 989–1015. [Google Scholar] [CrossRef]
- O’Dowd, N.P.; Shih, C.F. Family of crack-tip fields characterized by a triaxiality parameter–II. Fracture applications. J. Mech. Phys. Solids 1992, 40, 939–963. [Google Scholar] [CrossRef]
- Yang, S.; Chao, Y.J.; Sutton, M.A. Higher-order asymptotic fields in a power-law hardening material. Eng. Fract. Mech. 1993, 45, 1–20. [Google Scholar] [CrossRef]
- Nikishkov, G.P. An algorithm and a computer program for the three-term asymptotic expansion of elastic-plastic crack tip stress and displacement fields. Eng. Fract. Mech. 1995, 50, 65–83. [Google Scholar] [CrossRef]
- Nikishkov, G.P.; Bruckner-Foit, A.; Munz, D. Calculation of the second fracture parameter for finite cracked bodies using a three-term elastic-plastic asymptotic expansion. Eng. Fract. Mech. 1995, 52, 685–701. [Google Scholar] [CrossRef]
- Kfouri, A.P. Some evaluation of the elastic T-term using Eshelby’s method. Int. J. Fract. 1986, 30, 301–315. [Google Scholar] [CrossRef]
- Wang, X. Elastic T-stress for cracks in test specimens subjected to non-uniform stress distributions. Eng. Fract. Mech. 2002, 69, 1339–1352. [Google Scholar] [CrossRef]
- Ding, P.; Wang, X. An estimation method for the determination of the second elastic-plastic fracture mechanics parameters. Eng. Fract. Mech. 2012, 79, 295–311. [Google Scholar] [CrossRef]
- Ding, P.; Wang, X. A Simplified Small Scale Yielding Estimate Method for Determination of Second Elastic-Plastic Fracture Mechanics Parameter. In Proceedings of the 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control, Xi’an, China, 15–17 August 2018. [Google Scholar]
- Ding, P.; Wang, X. Solutions of the second elastic-plastic fracture mechanics parameter in test specimens under biaxial loading. Int. J. Press. Vessels Pip. 2013, 111–112, 279–294. [Google Scholar] [CrossRef]
- ABAQUS Manual, Version 10.1; Hibbitt, Karlsson & Sorensen, Inc.: Pawtucket, RI, USA, 2016.
- Moran, B.; Shih, C.F. A general treatment of crack tip contour integrals. Int. J. Fract. 1987, 35, 295–310. [Google Scholar] [CrossRef]
T/σ0 | n = 3 | n = 4 | n = 5 | n = 7 | n = 10 |
---|---|---|---|---|---|
−0.8 | 1.2297 | 0.8371 | 0.6433 | 0.4857 | 0.4189 |
−0.6 | 1.1626 | 0.7772 | 0.5913 | 0.4365 | 0.3659 |
−0.4 | 1.0866 | 0.7074 | 0.5254 | 0.3757 | 0.3050 |
−0.2 | 0.9959 | 0.6264 | 0.4529 | 0.3114 | 0.2429 |
0.0 | 0.8984 | 0.5432 | 0.3803 | 0.2489 | 0.1838 |
0.2 | 0.8077 | 0.4639 | 0.3114 | 0.1906 | 0.1298 |
0.4 | 0.7330 | 0.3957 | 0.2516 | 0.1409 | 0.0867 |
0.6 | 0.6767 | 0.3405 | 0.2032 | 0.0998 | 0.0522 |
0.8 | 0.6257 | 0.3011 | 0.1701 | 0.0652 | 0.0213 |
n = 3 | n = 4 | n = 5 | n = 7 | n = 10 | |
---|---|---|---|---|---|
ASSY | 0.8984 | 0.5432 | 0.3803 | 0.2489 | 0.1838 |
m1 | −0.4588 | −0.4064 | −0.3581 | −0.3039 | −0.2808 |
m2 | 0.0443 | 0.0398 | 0.0412 | 0.0415 | 0.0570 |
m3 | 0.1300 | 0.1124 | 0.0972 | 0.0643 | 0.0509 |
λ = 0.5 | λ = 1.0 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Model | n | a/W = 0.1 | a/W = 0.3 | a/W = 0.5 | a/W = 0.7 | a/W = 0.1 | a/W = 0.3 | a/W = 0.5 | a/W = 0.7 |
SECP | 3 | 2.100 | 1.400 | 0.380 | 0.095 | 0.600 | 1.050 | 0.450 | 0.100 |
4 | 1.900 | 1.150 | 0.350 | 0.085 | 0.600 | 0.950 | 0.400 | 0.090 | |
5 | 1.800 | 0.950 | 0.320 | 0.080 | 0.600 | 0.950 | 0.380 | 0.080 | |
7 | 1.700 | 0.850 | 0.320 | 0.070 | 0.600 | 1.000 | 0.350 | 0.070 | |
10 | 1.600 | 0.810 | 0.320 | 0.060 | 0.500 | 0.950 | 0.300 | 0.060 | |
CCP | 3 | 2.200 | 1.800 | 0.450 | 0.250 | 1.200 | 1.300 | 1.450 | 0.400 |
4 | 1.800 | 1.800 | 0.550 | 0.250 | 1.000 | 1.200 | 1.400 | 0.350 | |
5 | 1.500 | 1.750 | 0.650 | 0.250 | 1.000 | 1.000 | 1.300 | 0.400 | |
7 | 1.200 | 1.500 | 1.200 | 0.350 | 1.000 | 1.000 | 1.200 | 0.500 | |
10 | 1.000 | 1.200 | 1.150 | 0.400 | 1.000 | 1.000 | 1.100 | 0.500 | |
DECP | 3 | 2.100 | 2.100 | 1.250 | 0.700 | 0.650 | 0.650 | 0.750 | 1.050 |
4 | 2.000 | 2.200 | 1.250 | 0.600 | 0.500 | 0.500 | 0.650 | 1.100 | |
5 | 2.000 | 2.200 | 1.050 | 0.550 | 0.650 | 0.650 | 0.650 | 1.200 | |
7 | 1.900 | 2.000 | 0.950 | 0.550 | 0.750 | 0.750 | 0.850 | 0.650 | |
10 | 1.800 | 1.700 | 0.940 | 0.540 | 0.750 | 0.900 | 1.050 | 0.550 |
λ = 0.5 | λ = 1.0 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Model | n | a/W = 0.1 | a/W = 0.3 | a/W = 0.5 | a/W = 0.7 | a/W = 0.1 | a/W = 0.3 | a/W = 0.5 | a/W = 0.7 |
SECP | 3 | 1.800 | 1.400 | 0.350 | 0.080 | 1.000 | 1.400 | 0.350 | 0.080 |
4 | 1.700 | 1.300 | 0.320 | 0.070 | 0.900 | 1.200 | 0.300 | 0.070 | |
5 | 1.600 | 1.100 | 0.320 | 0.070 | 0.850 | 1.150 | 0.300 | 0.070 | |
7 | 1.600 | 0.900 | 0.320 | 0.070 | 0.750 | 1.100 | 0.300 | 0.060 | |
10 | 1.600 | 0.810 | 0.320 | 0.060 | 0.500 | 0.950 | 0.300 | 0.060 | |
CCP | 3 | 1.800 | 1.800 | 1.200 | 0.640 | 1.200 | 1.300 | 1.300 | 0.750 |
4 | 1.500 | 1.800 | 1.200 | 0.400 | 1.000 | 1.000 | 1.200 | 0.750 | |
5 | 1.200 | 1.750 | 1.200 | 0.400 | 1.000 | 1.000 | 1.200 | 0.750 | |
7 | 1.200 | 1.500 | 1.200 | 0.400 | 1.000 | 1.000 | 1.100 | 0.540 | |
10 | 1.000 | 1.200 | 1.150 | 0.400 | 1.000 | 1.000 | 1.100 | 0.500 | |
DECP | 3 | 2.000 | 2.000 | 1.250 | 0.700 | 1.000 | 1.100 | 1.200 | 1.200 |
4 | 2.000 | 2.200 | 1.250 | 0.650 | 0.900 | 1.000 | 1.100 | 0.870 | |
5 | 1.900 | 2.200 | 1.150 | 0.550 | 0.900 | 0.900 | 1.050 | 0.650 | |
7 | 1.900 | 2.000 | 0.950 | 0.550 | 0.900 | 0.900 | 1.050 | 0.550 | |
10 | 1.800 | 1.700 | 0.940 | 0.540 | 0.750 | 0.900 | 1.050 | 0.550 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, P.; Wang, X. A Simplified SSY Estimate Method to Determine EPFM Constraint Parameter for Sensor Design. Sensors 2019, 19, 717. https://doi.org/10.3390/s19030717
Ding P, Wang X. A Simplified SSY Estimate Method to Determine EPFM Constraint Parameter for Sensor Design. Sensors. 2019; 19(3):717. https://doi.org/10.3390/s19030717
Chicago/Turabian StyleDing, Ping, and Xin Wang. 2019. "A Simplified SSY Estimate Method to Determine EPFM Constraint Parameter for Sensor Design" Sensors 19, no. 3: 717. https://doi.org/10.3390/s19030717
APA StyleDing, P., & Wang, X. (2019). A Simplified SSY Estimate Method to Determine EPFM Constraint Parameter for Sensor Design. Sensors, 19(3), 717. https://doi.org/10.3390/s19030717