Using Inertial Sensors to Quantify Postural Sway and Gait Performance during the Tandem Walking Test
Abstract
:1. Introduction
2. Methods
2.1. Instrumentation and Preprocessing
2.2. Quantification of Postural Sway
2.3. Quantification of Gait Regularity
- Calculate the right and left stride templates by averaging the segmented right and left gait stride signals, respectively. We exclude the initial and final strides from the analysis and only use the middle strides, in order to control for acceleration and deceleration influences.
- Using the DTW method (https://www.mathworks.com/help/signal/ref/dtw.html), calculate a stride difference that is the sum of the Euclidean distances between corresponding points of gait stride signals. For example, the differences between each stride template and its consecutive stride signals were used to assess gait repeatability [27]. Gait symmetry was assessed by comparing the differences between the left and right gait stride signals.
- Calculate symmetry and repeatability variabilities using the mean of calculated differences.
2.4. Experimental Setup
2.4.1. Subjects
2.4.2. Test Procedure and Data Collection
2.4.3. Statistical Analysis
3. Results
3.1. Postural Sway
3.2. Gait Regularity
4. Discussion
4.1. Postural Sway and Gait Regularity
4.2. Case Observation in a Patient
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cohen, H.S.; Stitz, J.; Sangi-Haghpeykar, H.; Williams, S.P.; Mulavara, A.P.; Peters, B.T.; Bloomberg, J.J. Tandem walking as a quick screening test for vestibular disorders. Laryngoscope 2017, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.S.; Mulavara, A.P.; Peters, B.T.; Sangi-Haghpeykar, H.; Bloomberg, J.J. Tests of walking balance for screening vestibular disorders. J. Vestib. Res. 2012, 22, 95–104. [Google Scholar]
- Margolesky, J.; Singer, C. How tandem gait stumbled into the neurological exam: A review. Neurol. Sci. 2017, 39, 23–29. [Google Scholar] [CrossRef]
- Salzman, B. Gait and balance disorders in older adults. Am. Fam. Physician 2010, 82, 61–68. [Google Scholar] [PubMed]
- Schmitz-Hübsch, T.; Du Montcel, S.T.; Baliko, L.; Berciano, J.; Boesch, S.; Depondt, C.; Giunti, P.; Globas, C.; Infante, J.; Kang, J.-S. Scale for the assessment and rating of ataxia: Development of a new clinical scale. Neurology 2006, 66, 1717–1720. [Google Scholar] [CrossRef] [PubMed]
- Ashizawa, T.; Figueroa, K.P.; Perlman, S.L.; Gomez, C.M.; Wilmot, G.R.; Schmahmann, J.D.; Ying, S.H.; Zesiewicz, T.A.; Paulson, H.L.; Shakkottai, V.G. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J. Rare Dis. 2013, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Jacobi, H.; Bauer, P.; Giunti, P.; Labrum, R.; Sweeney, M.; Charles, P.; Dürr, A.; Marelli, C.; Globas, C.; Linnemann, C. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6 A 2-year follow-up study. Neurology 2011, 77, 1035–1041. [Google Scholar] [CrossRef]
- Yasui, K.; Yabe, I.; Yoshida, K.; Kanai, K.; Arai, K.; Ito, M.; Onodera, O.; Koyano, S.; Isozaki, E.; Sawai, S. A 3-year cohort study of the natural history of spinocerebellar ataxia type 6 in Japan. Orphanet J. Rare Dis. 2014, 9, 1–8. [Google Scholar] [CrossRef]
- Chen, S.; Lach, J.; Lo, B.; Yang, G.-Z. Toward pervasive gait analysis with wearable sensors: A systematic review. IEEE J. Biomed. Health Inform. 2016, 20, 1521–1537. [Google Scholar] [CrossRef]
- Horak, F.B.; Mancini, M. Objective biomarkers of balance and gait for Parkinson’s disease using body-worn sensors. Mov. Disord. 2013, 28, 1544–1551. [Google Scholar] [CrossRef]
- Hsu, Y.-L.; Chung, P.-C.; Wang, W.-H.; Pai, M.-C.; Wang, C.-Y.; Lin, C.-W.; Wu, H.-L.; Wang, J.-S. Gait and balance analysis for patients with Alzheimer’s disease using an inertial-sensor-based wearable instrument. IEEE J. Biomed. Health Inform. 2014, 18, 1822–1830. [Google Scholar] [CrossRef] [PubMed]
- Hubble, R.P.; Naughton, G.A.; Silburn, P.A.; Cole, M.H. Wearable sensor use for assessing standing balance and walking stability in people with Parkinson’s disease: A systematic review. PLoS ONE 2015, 10, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Sazonov, E.; Neuman, M.R. Wearable Sensors: Fundamentals, Implementation and Applications; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780124186620. [Google Scholar]
- Vienne, A.; Barrois, R.P.; Buffat, S.; Ricard, D.; Vidal, P.-P. Inertial sensors to assess gait quality in patients with neurological disorders: A systematic review of technical and analytical challenges. Front. Psychol. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Seel, T.; Raisch, J.; Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [PubMed]
- Agostini, V.; Gastaldi, L.; Rosso, V.; Knaflitz, M.; Tadano, S. A wearable magneto-inertial system for gait analysis (H-Gait): Validation on normal weight and overweight/obese young healthy adults. Sensors 2017, 17, 2406. [Google Scholar] [CrossRef] [PubMed]
- Tognetti, A.; Lorussi, F.; Carbonaro, N.; de Rossi, D. Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life. Sensors 2015, 15, 28435–28455. [Google Scholar] [CrossRef] [PubMed]
- Trojaniello, D.; Cereatti, A.; Pelosin, E.; Avanzino, L.; Mirelman, A.; Hausdorff, J.M.; Della Croce, U. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: Application to elderly, hemiparetic, parkinsonian and choreic gait. J. Neuroeng. Rehabil. 2014, 11, 152. [Google Scholar] [CrossRef]
- Cohen, H.S.; Mulavara, A.P.; Peters, B.T.; Sangi-Haghpeykar, H.; Kung, D.H.; Mosier, D.R.; Bloomberg, J.J. Sharpening the tandem walking test for screening peripheral neuropathy. Southern Med. J. 2013, 106, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Van de Warrenburg, B.P.; Bakker, M.; Kremer, B.P.; Bloem, B.R.; Allum, J.H. Trunk sway in patients with spinocerebellar ataxia. Mov. Disord. 2005, 20, 1006–1013. [Google Scholar] [CrossRef]
- Buckley, E.; Mazzà, C.; McNeill, A. A systematic review of the gait characteristics associated with cerebellar ataxia. Gait Posture 2017, 60, 154–163. [Google Scholar] [CrossRef]
- Hickey, A.; Gunn, E.; Alcock, L.; Del Din, S.; Godfrey, A.; Rochester, L.; Galna, B. Validity of a wearable accelerometer to quantify gait in spinocerebellar ataxia type 6. Physiol. Meas. 2016, 37, N105–N117. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, A.; Yoshida, K.; Genno, H.; Ikeda, S.-I. Principal component analysis for ataxic gait using a triaxial accelerometer. J. Neuroeng. Rehabil. 2017, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, A.; Yoshida, K.; Genno, H.; Murata, A.; Matsuzawa, S.; Nakamura, K.; Nakamura, A.; Ikeda, S.-I. Clinical assessment of standing and gait in ataxic patients using a triaxial accelerometer. Cerebellum Ataxias 2015, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Shirai, S.; Yabe, I.; Matsushima, M.; Ito, Y.M.; Yoneyama, M.; Sasaki, H. Quantitative evaluation of gait ataxia by accelerometers. J. Neurol. Sci. 2015, 358, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Herdman, S.J.; Clendaniel, R.A. Vestibular Rehabilitation; F. A. Davis Company: Philadelphia, PA, USA, 2014; ISBN 978-0803639706. [Google Scholar]
- Kim, K.J.; Gimmon, Y.; Sorathia, S.; Beaton, K.; Schubert, M. Exposure to an extreme environment comes at a sensorimotor cost. NPJ Microgravity 2018, 4, 1–8. [Google Scholar] [CrossRef]
- Kim, K.J.; Lučarević, J.; Bennett, C.; Gaunaurd, I.; Gailey, R.; Agrawal, V. Testing the assumption of normality in body sway area calculations during unipedal stance tests with an inertial sensor. In Proceedings of the IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4987–4990. [Google Scholar] [CrossRef]
- Kim, K.J.; Agrawal, V.; Bennett, C.; Gaunaurd, I.; Gailey, R. Measurement of lower limb segmental excursion using inertial sensors during single limb stance. J. Biomech. 2018, 11, 151–158. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Woollacott, M.H. Motor Control: Translating Research into Clinical Practice; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; ISBN 9781496302632. [Google Scholar]
- Tan, U.-X.; Veluvolu, K.C.; Latt, W.T.; Shee, C.Y.; Riviere, C.N.; Ang, W.T. Estimating displacement of periodic motion with inertial sensors. IEEE Sens. J. 2008, 8, 1385–1388. [Google Scholar]
- Flash, T.; Hogan, N. The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 1985, 5, 1688–1703. [Google Scholar] [CrossRef]
- Mancini, M.; Horak, F.B.; Zampieri, C.; Carlson-Kuhta, P.; Nutt, J.G.; Chiari, L. Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Parkinsonism Relat. Disord. 2011, 17, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.; Salarian, A.; Carlson-Kuhta, P.; Zampieri, C.; King, L.; Chiari, L.; Horak, F.B. ISway: A sensitive, valid and reliable measure of postural control. J. Neuroeng. Rehabil. 2012, 9, 1–8. [Google Scholar] [CrossRef]
- Auvinet, B.; Alix, A.; Chaleil, D.; Brun, M.; Barrey, E. 22.1 Gait regularity: Measurement and significance. Gait Posture 2005, 21, S143. [Google Scholar] [CrossRef]
- Kobayashi, H.; Kakihana, W.; Kimura, T. Combined effects of age and gender on gait symmetry and regularity assessed by autocorrelation of trunk acceleration. J. Neuroeng. Rehabil. 2014, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Berndt, D.J.; Clifford, J. Using Dynamic Time Warping to Find Patterns in Time Series; KDD Workshop: Seattle, WA, USA, 1994; pp. 359–370. [Google Scholar]
- Keogh, E.; Ratanamahatana, C.A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 2005, 7, 358–386. [Google Scholar] [CrossRef] [Green Version]
- Barth, J.; Oberndorfer, C.; Pasluosta, C.; Schülein, S.; Gassner, H.; Reinfelder, S.; Kugler, P.; Schuldhaus, D.; Winkler, J.; Klucken, J. Stride segmentation during free walk movements using multi-dimensional subsequence dynamic time warping on inertial sensor data. Sensors 2015, 15, 6419–6440. [Google Scholar] [CrossRef] [PubMed]
- Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.-F.; Robert, P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 2002, 35, 689–699. [Google Scholar] [CrossRef]
- Greene, B.R.; McGrath, D.; O’Neill, R.; O’Donovan, K.J.; Burns, A.; Caulfield, B. An adaptive gyroscope-based algorithm for temporal gait analysis. Med. Biol. Eng. Comput. 2010, 48, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Park, E.J. Quasi real-time gait event detection using shank-attached gyroscopes. Med. Biol. Eng. Comput. 2011, 49, 707–712. [Google Scholar] [CrossRef]
- Tong, K.; Granat, M.H. A practical gait analysis system using gyroscopes. Med. Eng. Phys. 1999, 21, 87–94. [Google Scholar] [CrossRef]
- Allseits, E.; Lučarević, J.; Gailey, R.; Agrawal, V.; Gaunaurd, I.; Bennett, C. The development and concurrent validity of a real-time algorithm for temporal gait analysis using inertial measurement units. J. Biomech. 2017, 55, 27–33. [Google Scholar] [CrossRef]
- Allseits, E.; Agrawal, V.; Lučarević, J.; Gailey, R.; Gaunaurd, I.; Bennett, C. A practical step length algorithm using lower limb angular velocities. J. Biomech. 2017, 3, 137–144. [Google Scholar] [CrossRef]
- Mamoto, Y.; Yamamoto, K.; Imai, T.; Tamura, M.; Kubo, T. Three-dimensional analysis of human locomotion in normal subjects and patients with vestibular deficiency. Acta Oto-Laryngol. 2002, 122, 495–500. [Google Scholar] [CrossRef]
- Woollacott, M.H.; Shumway-Cook, A.; Nashner, L.M. Aging and posture control: Changes in sensory organization and muscular coordination. Int. J. Aging Hum. Dev. 1986, 23, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Tinetti, M.E.; Speechley, M.; Ginter, S.F. Risk factors for falls among elderly persons living in the community. N. Engl. J. Med. 1988, 319, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
Variable | Young Healthy Control Group | Old Healthy Control Group | Patient Group |
---|---|---|---|
Number of subjects | 5 | 5 | 5 |
Male/Female | 4/1 | 1/4 | 3/2 |
Age (mean (1 SD)) | 29.6 (5.94) | 76.4 (1.67) | 67.4 (16.0) |
Diagnosis | Healthy | Healthy | Right vestibular schwannoma Right vestibular neuritis Left vestibular hypo-function Meniere’s disease (unspecified laterality) Left Meniere’s disease |
Measure | Group | Mean (1 SD) | Comparison between Groups |
---|---|---|---|
Sway Jerkiness Head (cm2/s5) | Young control | 8.13 (4.86) | p < 0.001 |
Old control | 8.57 (2.82) | ||
Patient | 43.96 (28.52) *# | ||
Sway Jerkiness Trunk (cm2/s5) | Young control | 8.06 (6.02) | p < 0.001 |
Old control | 7.00 (2.69) | ||
Patient | 19.31 (9.03) *# | ||
Sway Jerkiness Pelvis (cm2/s5) | Young control | 14.86 (5.55) | p < 0.001 |
Old control | 11.94 (4.21) | ||
Patient | 47.51 (24.96) *# | ||
Displacement Area Head (cm×s) | Young control | 25.80 (14.25) | p = 0.001 |
Old control | 14.26 (4.64) | ||
Patient | 72.76 (59.09) *# | ||
Displacement Area Trunk (cm×s) | Young control | 26.08 (13.45) | p < 0.001 |
Old control | 18.13 (5.81) | ||
Patient | 77.89 (60.30) *# | ||
Displacement Area Pelvis (cm×s) | Young control | 17.13 (8.21) | p < 0.001 |
Old control | 13.77 (2.84) | ||
Patient | 33.62 (13.85) *# |
Measure | Group | Mean (1 SD) | Comparison between Groups |
---|---|---|---|
Sway Jerkiness Head (cm2/s5) | Young control | 25.38 (24.54) | p < 0.001 |
Old control | 24.38 (8.02) | ||
Patient | 82.69 (32.30) *# | ||
Sway Jerkiness Trunk (cm2/s5) | Young control | 14.51 (8.92) | p < 0.001 |
Old control | 15.29 (6.20) | ||
Patient | 34.63 (11.92) *# | ||
Sway Jerkiness Pelvis (cm2/s5) | Young control | 31.73 (15.91) | p < 0.001 |
Old control | 41.51 (20.09) | ||
Patient | 103.80 (31.83) *# | ||
Displacement Area Head (cm×s) | Young control | 49.10 (37.76) | p < 0.001 |
Old control | 27.85 (7.16) | ||
Patient | 123.37 (72.92) *# | ||
Displacement Area Trunk (cm×s) | Young control | 53.95 (37.66) | p < 0.001 |
Old control | 33.54 (9.56) | ||
Patient | 136.66 (85.37) *# | ||
Displacement Area Pelvis (cm×s) | Young control | 20.91 (8.37) | p < 0.001 |
Old control | 15.87 (3.67) | ||
Patient | 53.56 (22.78) *# |
Measure | Group | Mean (1 SD) | Comparison between Groups |
---|---|---|---|
Gait Symmetry (rad/s) | Young control | 2.60 (0.78) | p < 0.001 |
Old control | 6.22 (2.54) ‡ | ||
Patient | 11.73 (10.15) * | ||
Gait Repeatability Left (rad/s) | Young control | 1.90 (0.80) | p = 0.002 |
Old control | 4.37 (4.00) | ||
Patient | 8.71 (9.42) * | ||
Gait Repeatability Right (rad/s) | Young control | 1.83 (0.84) | p < 0.001 |
Old control | 2.94 (1.82) | ||
Patient | 8.15 (6.62) *# |
Measure | Group | Mean (1 SD) | Comparison between Groups |
---|---|---|---|
Gait Symmetry (rad/s) | Young control | 9.10 (6.46) | p = 0.001 |
Old control | 13.97 (5.61) | ||
Patient | 21.27 (8.42) * | ||
Gait Repeatability Left (rad/s) | Young control | 7.89 (7.54) | p = 0.006 |
Old control | 14.61 (13.58) | ||
Patient | 20.86 (11.56) * | ||
Gait Repeatability Right (rad/s) | Young control | 7.36 (6.37) | p = 0.002 |
Old control | 10.97 (12.19) | ||
Patient | 28.63 (22.00) *# |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.J.; Gimmon, Y.; Millar, J.; Schubert, M.C. Using Inertial Sensors to Quantify Postural Sway and Gait Performance during the Tandem Walking Test. Sensors 2019, 19, 751. https://doi.org/10.3390/s19040751
Kim KJ, Gimmon Y, Millar J, Schubert MC. Using Inertial Sensors to Quantify Postural Sway and Gait Performance during the Tandem Walking Test. Sensors. 2019; 19(4):751. https://doi.org/10.3390/s19040751
Chicago/Turabian StyleKim, Kyoung Jae, Yoav Gimmon, Jennifer Millar, and Michael C. Schubert. 2019. "Using Inertial Sensors to Quantify Postural Sway and Gait Performance during the Tandem Walking Test" Sensors 19, no. 4: 751. https://doi.org/10.3390/s19040751
APA StyleKim, K. J., Gimmon, Y., Millar, J., & Schubert, M. C. (2019). Using Inertial Sensors to Quantify Postural Sway and Gait Performance during the Tandem Walking Test. Sensors, 19(4), 751. https://doi.org/10.3390/s19040751