Review on Wearables to Monitor Foot Temperature in Diabetic Patients
Abstract
:1. Introduction
2. Devices to Monitor Patient’s Health
3. Smart Technology to Continuously Monitor the Body Temperature
4. A Review of eHealth Monitoring Systems in Spain
Current Research and Developed Technologies for the Diabetic Foot in Spain
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas. Available online: http://diabetesatlas.org/resources/2017-atlas.html (accessed on 12 December 2018).
- Shi, Y.; Hu, F.B. The global implications of diabetes and cancer. Lancet 2014, 383, 1947–1948. [Google Scholar] [CrossRef]
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas. Available online: https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/19-atlas-6th-edition.html (accessed on 12 December 2018).
- Maciejewski, M.L.; Reiber, G.E.; Smith, D.G.; Wallace, C.; Hayes, S.; Boyko, E.J. Effectiveness of diabetic therapeutic footwear in preventing reulceration. Diabetes Care 2004, 27, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.H.; Austin, B.T.; Davis, C.; Hindmarsh, M.; Schaefer, J.; Bonomi, A. Improving chronic illness care: Translating evidence into action. Health Aff. 2001, 20, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Armstrong, D.; Lipsky, B. Preventing foot ulcers in patients with diabetes. JAMA 2005, 293, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Litzelman, D.K.; Marriott, D.J.; Vinicor, F. Independent physiological predictors of foot lesions in patients with NIDDM. Diabetes Care 1997, 20, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Katsilambros, N.; Dounis, E.; Makrilakis, K.; Tentolouris, N.; Tsapogas, P. Atlas of the Diabetic Foot; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Apelqvist, J.; Larsson, J. What is the most effective way to reduce incidence of amputation in the diabetic foot? Diabetes/Metab. Res. Rev. 2000, 16 (Suppl. 1), S75–S83. [Google Scholar] [CrossRef]
- National Diabetes Data Group (U.S.); National Institute of Diabetes and Digestive and Kidney Diseases (U.S.); National Institutes of Health (U.S.). Diabetes in America; NIH Publication: Bethesda, MD, USA, 1995.
- Levin, M.E.; O’Neal, L.W.; Bowker, J.H. The Diabetic Foot; Elsevier: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Bagavathiappan, S.; Philip, J.; Jayakumar, T.; Raj, B.; Rao, P.N.S.; Varalakshmi, M.; Mohan, V. Correlation between plantar foot temperature and diabetic neuropathy: A case study by using an infrared thermal imaging technique. J. Diabetes Sci. Technol. 2010, 4, 1386–1392. [Google Scholar] [CrossRef]
- Jones, B.F.; Plassmann, P. Digital infrared thermal imaging of human skin. IEEE Eng. Med. Biol. Mag. 2002, 21, 41–48. [Google Scholar] [CrossRef]
- Tamura, T.; Ogawa, M.; Yoda, M.; Togawa, T. Fully automated health monitoring system in the home. IEEJ Trans. Electron. Inf. Syst. 1998, 118, 993–998. [Google Scholar] [CrossRef]
- López, G.; Custodio, V.; Moreno, J.I. LOBIN: E-textile and wireless-sensor-network-based platform for healthcare monitoring in future hospital environments. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1446–1458. [Google Scholar] [CrossRef]
- Chen, B.R.; Patel, S.; Buckley, T.; Rednic, R.; McClure, D.J.; Shih, L.; Tarsy, D.; Welsh, M.; Bonato, P. A web-based system for home monitoring of patients with Parkinson’s disease using wearable sensors. IEEE Trans. Biomed. Eng. 2011, 58, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.M.; Gholamhosseini, H. Smart health monitoring systems: An overview of design and modeling. J. Med. Syst. 2013, 37, 9898. [Google Scholar] [CrossRef] [PubMed]
- ElSaadany, Y.; Majumder, A.J.A.; Ucci, D.R. A wireless early prediction system of cardiac arrest through IoT. In Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, Italy, 4–8 July 2017; Volume 2, pp. 690–695. [Google Scholar]
- Decker, D. eHealth Report Spain. 2018. Available online: https://www.statista.com/study/55810/ehealth-market-report/ (accessed on 22 October 2018).
- Gopalsamy, C.; Park, S.; Rajamanickam, R.; Jayaraman, S. The Wearable Motherboard™: The first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Real. 1999, 4, 152–168. [Google Scholar] [CrossRef]
- TarniŢă, D. Wearable sensors used for human gait analysis. Rom. J. Morphol. Embryol. 2016, 57, 373–382. [Google Scholar]
- Boroojerdi, B.; Ghaffari, R.; Mahadevan, N.; Michael, M.M.; Melton, K.; Morey, B.; Otoul, C.; Patel, S.; Phillips, J.; Sen-Gupta, E.; et al. Clinical feasibility of a wearable, conformable sensor patch to monitor motor symptoms in Parkinson’s disease. Park. Relat. Disord. 2018. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Lara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 2013, 15, 1192–1209. [Google Scholar] [CrossRef]
- Sun, R.; Moon, Y.; McGinnis, R.S.; Seagers, K.; Motl, R.W.; Sheth, N.; Wright, J.A.; Ghaffari, R.; Patel, S.; Sosnoff, J.J. Assessment of Postural Sway in Individuals with Multiple Sclerosis Using a Novel Wearable Inertial Sensor. Digit. Biomark. 2018, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Yang, Z.; Wang, Q.; Wang, C.; Chen, S. A wearable comprehensive data sampling system for gait analysis. J. Med. Eng. Technol. 2018, 42, 335–343. [Google Scholar] [CrossRef]
- Khoury, N.; Attal, F.; Amirat, Y.; Oukhellou, L.; Mohammed, S. Data-Driven Based Approach to Aid Parkinson’s Disease Diagnosis. Sensors 2019, 19, 242. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Herman, T.; Mirelman, A.; Shiratzky, S.S.; Giladi, N.; Barnes, L.L.; Bennett, D.A.; Buchman, A.S.; Hausdorff, J.M. The transition between turning and sitting in patients with Parkinson’s disease: A wearable device detects an unexpected sequence of events. Gait Posture 2019, 67, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Sibinski, M.; Jakubowska, M.; Sloma, M. Flexible temperature sensors on fibers. Sensors 2010, 10, 7934–7946. [Google Scholar] [CrossRef]
- Reddy, P.N.; Cooper, G.; Weightman, A.; Hodson-Tole, E.; Reeves, N. An in-shoe temperature measurement system for studying diabetic foot ulceration etiology: Preliminary results with healthy participants. Procedia CIRP 2016, 49, 153–156. [Google Scholar] [CrossRef]
- Park, S.; Jayaraman, S. Enhancing the quality of life through wearable technology. IEEE Eng. Med. Biol. Mag. 2003, 22, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Swan, M. Sensor mania! the internet of things, wearable computing, objective metrics, and the quantified self 2.0. J. Sens. Actuator Netw. 2012, 1, 217–253. [Google Scholar] [CrossRef]
- Anliker, U.; Ward, J.A.; Lukowicz, P.; Troster, G.; Dolveck, F.; Baer, M.; Keita, F.; Schenker, E.B.; Catarsi, F.; Coluccini, L.; et al. AMON: A wearable multiparameter medical monitoring and alert system. IEEE Trans. Inf. Technol. Biomed. 2004, 8, 415–427. [Google Scholar] [CrossRef]
- Mundt, C.W.; Montgomery, K.N.; Udoh, U.E.; Barker, V.N.; Thonier, G.C.; Tellier, A.M.; Ricks, R.D.; Darling, R.B.; Cagle, Y.D.; Cabrol, N.A.; et al. A multiparameter wearable physiologic monitoring system for space and terrestrial applications. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 382–391. [Google Scholar] [CrossRef]
- Di Rienzo, M.; Rizzo, F.; Parati, G.; Brambilla, G.; Ferratini, M.; Castiglioni, P. MagIC system: A new textile-based wearable device for biological signal monitoring. Applicability in daily life and clinical setting. In Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005, Shanghai, China, 17–18 January 2005; pp. 7167–7169. [Google Scholar]
- Pandian, P.; Mohanavelu, K.; Safeer, K.; Kotresh, T.; Shakunthala, D.; Gopal, P.; Padaki, V. Smart Vest: Wearable multi-parameter remote physiological monitoring system. Med. Eng. Phys. 2008, 30, 466–477. [Google Scholar] [CrossRef]
- Otero, J.; Gómez, A. Integración de Dispositivos Biomédicos en Sistemas de Teleasistencia; Galícia: Centro de Supercomputación de Galicia: Santiago de Compostela, Spain, 2007. [Google Scholar]
- Patel, S.; McGinnis, R.S.; Silva, I.; DiCristofaro, S.; Mahadevan, N.; Jortberg, E.; Franco, J.; Martin, A.; Lust, J.; Raj, M.; et al. A wearable computing platform for developing cloud-based machine learning models for health monitoring applications. In Proceedings of the 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 5997–6001. [Google Scholar]
- Lonini, L.; Dai, A.; Shawen, N.; Simuni, T.; Poon, C.; Shimanovich, L.; Daeschler, M.; Ghaffari, R.; Rogers, J.A.; Jayaraman, A. Wearable sensors for Parkinson’s disease: Which data are worth collecting for training symptom detection models. NPJ Digit. Med. 2018, 1, 6. [Google Scholar] [CrossRef]
- Tamura, T.; Zhou, J.; Mizukami, H.; Togawa, T. A system for monitoring temperature distribution in bed and its application to the assessment of body movement. Physiol. Meas. 1993, 14, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Ojike, O.; Mbajiorgu, C.; Anoliefo, E.; Okonkwo, W. Design and Analysis of a Multipoint Temperature Datalogger. Niger. J. Technol. 2016, 35, 458–464. [Google Scholar] [CrossRef]
- Lavery, L.A.; Agrawal, C.M.; Athanasiou, K.A.; Constantinides, G.P.; Lanctot, D.R.; Zamorano, R.G. Foot Temperature and Health Monitoring System. U.S. Patent 6,767,330, 2004. [Google Scholar]
- Husain, M.D.; Kennon, R. Preliminary investigations into the development of textile based temperature sensor for healthcare applications. Fibers 2013, 1, 2–10. [Google Scholar] [CrossRef]
- Lugoda, P.; Hughes-Riley, T.; Morris, R.; Dias, T. A Wearable Textile Thermograph. Sensors 2018, 18, 2369. [Google Scholar] [CrossRef] [PubMed]
- Zeiner, A.; Klewer, J.; Sterz, F.; Haugk, M.; Krizanac, D.; Testori, C.; Losert, H.; Ayati, S.; Holzer, M. Non-invasive continuous cerebral temperature monitoring in patients treated with mild therapeutic hypothermia: An observational pilot study. Resuscitation 2010, 81, 861–866. [Google Scholar] [CrossRef]
- Moran, D.S.; Mendal, L. Core Temperature Measurement. Sports Med. 2002, 32, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Daanen, H. Infrared typmanic tempature and ear canal morphology. J. Med. Eng. Technol. 2006, 30, 224–234. [Google Scholar] [CrossRef]
- Easton, C.; Fudge, B.W.; Pitsiladis, Y.P. Rectal, telemetry pill and tympanic membrane thermometry during exercise heat stress. J. Therm. Biol. 2007, 32, 78–86. [Google Scholar] [CrossRef]
- Mendt, S.; Maggioni, M.A.; Nordine, M.; Steinach, M.; Opatz, O.; Belavý, D.; Felsenberg, D.; Koch, J.; Shang, P.; Gunga, H.C.; et al. Circadian rhythms in bed rest: Monitoring core body temperature via heat-flux approach is superior to skin surface temperature. Chronobiol. Int. 2017, 34, 666–676. [Google Scholar] [CrossRef]
- Welles, A.; Xu, X.; Santee, W.; Looney, D.; Buller, M.J.; Potter, A.; Hoyt, R.W. Estimation of core body temperature from skin temperature, heat flux, and heart rate using a Kalman filter. Comput. Biol. Med. 2018, 99, 1–6. [Google Scholar] [CrossRef]
- Scherz, P. Practical Electronics for Inventors; McGraw-Hill, Inc.: New York, NY, USA, 2006. [Google Scholar]
- Areny, R. Sensores y Acondicionadores de Señal; Marcombo S.A.: Barcelona, Spain, 2004. [Google Scholar]
- Quintela, F.R.; Melchor, R.C.R. Redes Eléctricas De Kirchhoff: Con 400 Problemas Resueltos; REVIDE: Salamanca, Spain, 2005. [Google Scholar]
- Aneja, B.; Singh, S.; Chandna, U.; Maheshwari, V. Review of Temperature Measurement and Control. Int. J. Electr. Electron. Eng. 2011, 3, 29–37. [Google Scholar]
- Hughes-Riley, T.; Lugoda, P.; Dias, T.; Trabi, C.L.; Morris, R.H. A Study of thermistor performance within a textile structure. Sensors 2017, 17, 1804. [Google Scholar] [CrossRef] [PubMed]
- Bullón Pérez, J.; Hernández Encinas, A.; Martín-Vaquero, J.; Queiruga-Dios, A.; Martínez Nova, A.; Torreblanca González, J. Proposal of Wearable Sensor-Based System for Foot Temperature Monitoring. In Proceedings of the 14th International Conference Distributed Computing and Artificial Intelligence; Omatu, S., Rodríguez, S., Villarrubia, G., Faria, P., Sitek, P., Prieto, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 165–172. [Google Scholar]
- Council, N.R. Expanding the Vision of Sensor Materials; The National Academies Press: Washington, DC, USA, 1995. [Google Scholar]
- Farrar, C.R.; Worden, K. An Introduction to Structural Health Monitoring. In New Trends in Vibration Based Structural Health Monitoring; Deraemaeker, A., Worden, K., Eds.; Springer: Vienna, Austria, 2010; pp. 1–17. [Google Scholar]
- Staszewski, W.; Boller, C.; Tomlinson, G. Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Mateo Jiménez, F. Redes Neuronales Y Preprocesado De Variables Para Modelos Y Sensores en BioingenieríA. Ph.D. Thesis, Universitat Politècnica de València, València, Spain, 2012. [Google Scholar]
- Gualdrón Guerrero, O.; Durán Acevedo, C.; Araque Gallardo, J.; Ortiz Sandoval, J. Clasificación de compuestos químicos usando un sistema multisensorial (Nariz Electrónica) desarrollada sobre un dispositivo hardware (FPGA). Cienc. Innov. Tecnol. 2013, 1, 13–21. [Google Scholar]
- De Isla, L.P.; Lennie, V.; Quezada, M.; Guinea, J.; Arce, C.; Abad, P.; Saltijeral, A.; Campos, N.C.; Crespo, J.; Gonzálvez, B.; et al. New generation dynamic, wireless and remote cardiac monitorization platform: A feasibility study. Int. J. Cardiol. 2011, 153, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Carrera Perez, F. Dummy Temperature Measurement for Children. ES1031558 U. 16 January 1996. [Google Scholar]
- Galiano Casas, A. Pacifier Baby Temperature Detector. ES1054591 U. 16 August 2003. [Google Scholar]
- Vidal Solà, P.; Soldevila Grau, F.; Pérez de la Hoz, S.; Juan Rosell, M. Children’S Pyjamas With Integrated Temperature Sensor. ES1065692U. 16 October 2007. [Google Scholar]
- Flores Canales, J.J. Body Temperature Meter and Method for Body Temperature Meter. ES2549394 A1. 27 October 2015. [Google Scholar]
- Sanz-Corbalán, I.; Lázaro-Martínez, J.L.; García-Morales, E.; Molines-Barroso, R.; Álvaro-Afonso, F.; García-Álvarez, Y. Advantages of early diagnosis of diabetic neuropathy in the prevention of diabetic foot ulcers. Diabetes Res. Clin. Pract. 2018, 146, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Klepzig, J.L.; Sánchez-Ríos, J.P.; Manu, C.; Ahluwalia, R.; Lüdemann, C.; Meloni, M.; Lacopi, E.; De Buruaga, V.R.S.; Bouillet, B.; Vouillarmet, J.; et al. Perception of diabetic foot ulcers among general practitioners in four European countries: Knowledge, skills and urgency. J. Wound Care 2018, 27, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, S.; Rubio, J.A.; Álvarez, J.; Lázaro-Martínez, J.L. Análisis de las reulceraciones en una unidad multidisciplinar de pie diabético tras la implementación de un programa de cuidado integrado del pie. Endocrinol. Diabetes Nutr. 2018, 65, 425–476. [Google Scholar] [CrossRef]
- Astasio-Picado, A.; Martínez, E.E.; Nova, A.M.; Rodríguez, R.S.; Gómez–Martín, B. Thermal map of the diabetic foot using infrared thermography. Infrared Phys. Technol. 2018, 93, 59–62. [Google Scholar] [CrossRef]
- Quesada, J.I.P.; Gil-Calvo, M.; Jimenez-Perez, I.; Lucas-Cuevas, Á.G.; Pérez-Soriano, P. Relationship between foot eversion and thermographic foot skin temperature after running. Appl. Opt. 2017, 56, 5559–5565. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, R.; Martínez-Nova, A.; Escamilla-Martínez, E.; Pedrera-Zamorano, J.D. Can the Foot Posture Index or their individual criteria predict dynamic plantar pressures? Gait Posture 2012, 36, 591–595. [Google Scholar] [CrossRef]
- Solé, A. Instrumentación Industrial; Marcombo: Andalusia, Spain, 2005. [Google Scholar]
- Corral, J.; Estellés, E.; de Loma-Osorio, J.; Rodríguez. Instrumentación Electrónica: Sensores (I); Universidad Politécnica de Valencia, Servicio de Publicaciones: Valencia, Spain, 1994. [Google Scholar]
- Evans, B.W. Beginning Arduino Programming; Apress: New York, NY, USA, 2011. [Google Scholar]
- Reyes Cortés, F.; Cid Monjarra, J. Aplicaciones en Robótica, Mecatrónica e Ingenierías; Marcombo: Andalusia, Spain, 2015. [Google Scholar]
- Bustamante, J. Curso Completo Arduino; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017. [Google Scholar]
- Aparicio, M.P. Iniciación a Arduino Uno; Marcombo: Andalusia, Spain, 2014. [Google Scholar]
- Calaza, G.T. Taller de Arduino: Un Enfoque Práctico Para Principiantes; Marcombo Ediciones Técnicas: Barcelona, Spain, 2015. [Google Scholar]
- Queiruga-Dios, A.; Pérez, J.B.; Encinas, A.H.; Martín-Vaquero, J.; Nova, A.M.; González, J.T. Skin Temperature Monitoring to Avoid Foot Lesions in Diabetic Patients. In International Conference on Practical Applications of Computational Biology & Bioinformatics; Springer: Cham, Switzerland, 2017; pp. 110–117. [Google Scholar]
- Apelqvist, J.; Bakker, K.; van Houtum, W.; Schaper, N. Practical guidelines on the management and prevention of the diabetic foot: Based upon the International Consensus on the Diabetic Foot (2007) Prepared by the International Working Group on the Diabetic Foot. Diabetes Metab. Res. Rev. 2008, 24 (Suppl. 1), S181–S187. [Google Scholar] [CrossRef] [PubMed]
Device | Variables | Technology | Place |
---|---|---|---|
Motherboard™ [21] | Penetration of a proiectile, ECG, SpO, temperature, voice | Intelligent garment | Used by the US Navy in combact |
AMON (wrist–worn device) [34] | ECG, SpO, Blood pressure, heart rhythm | Siemens TC35 Cellular Engine | Hospital or home |
LifeGuard [35] | ECG, SpO, activity, respiratory rate, heart rhythm, temperature | Bluetooth | remote and/or extreme environments |
MagIC [36] | ECG, respiratory activity | Textile sensors | daily life and clinical environment. |
Smart Vest [37] | ECG, PPG, body temperature, blood pressure, GSR, heart rate. | Home | wireless transceiver module (Xstream™) |
LOBIN project [16] | ECG, temperature | RFID | Hospital |
Device | Sensor Type | Technology | Place | Others |
---|---|---|---|---|
A grid for [41] feet temperature monitoring in bed | 16 thermistors PBN-41E, Shibaura Denshi, Tokyo, Japan | data logger with a memory card | Bed | Measurement range: 0–C Accuracy: |
Multipoint temperature [42] logger | LM35 as sensor and Arduino UNO | data logger with a memory card | Temperature Range: −55 to C | |
A grid for feet temperature monitoring [43] | Temperature sensors | Multiple sensors to collect different vital data | Laboratory with the apparatus |
Type | Material | Voltage (mV) |
---|---|---|
B | Platinum–rhodium 30% vs. platinum–rhodium 6% | 0 to 10.094 |
R | Platinum–rhodium 13% vs. platinum | 0 to 16.035 |
S | Platinum–rhodium 10% vs. platinum | 0 to 13.155 |
J | Iron vs. constantan | −7.89 to 39.130 |
K | Nickel–chromium vs. nickel | 0 to 41.269 |
T | Copper vs. constantan | −5.60 to 14.86 |
E | Nickel–chromium vs. constantan | −9.83 to 53.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Vaquero, J.; Hernández Encinas, A.; Queiruga-Dios, A.; José Bullón, J.; Martínez-Nova, A.; Torreblanca González, J.; Bullón-Carbajo, C. Review on Wearables to Monitor Foot Temperature in Diabetic Patients. Sensors 2019, 19, 776. https://doi.org/10.3390/s19040776
Martín-Vaquero J, Hernández Encinas A, Queiruga-Dios A, José Bullón J, Martínez-Nova A, Torreblanca González J, Bullón-Carbajo C. Review on Wearables to Monitor Foot Temperature in Diabetic Patients. Sensors. 2019; 19(4):776. https://doi.org/10.3390/s19040776
Chicago/Turabian StyleMartín-Vaquero, Jesús, Ascensión Hernández Encinas, Araceli Queiruga-Dios, Juan José Bullón, Alfonso Martínez-Nova, Jose Torreblanca González, and Cristina Bullón-Carbajo. 2019. "Review on Wearables to Monitor Foot Temperature in Diabetic Patients" Sensors 19, no. 4: 776. https://doi.org/10.3390/s19040776
APA StyleMartín-Vaquero, J., Hernández Encinas, A., Queiruga-Dios, A., José Bullón, J., Martínez-Nova, A., Torreblanca González, J., & Bullón-Carbajo, C. (2019). Review on Wearables to Monitor Foot Temperature in Diabetic Patients. Sensors, 19(4), 776. https://doi.org/10.3390/s19040776