High-Sensitivity Microwave Sensor for Liquid Characterization Using a Complementary Circular Spiral Resonator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Design
2.2. Measurement Setup and Device Performance
2.2.1. Device Characterization
2.2.2. Sensitivity of Different Positions
3. Measured Results with Different Samples
3.1. Different Liquids
3.2. Ethanol–Water Solution Measurements
4. Simulation and Analysis of the Dielectric Constant
4.1. Different Liquids
4.2. Ethanol–Water Solution
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Both, E.B.; Moreno-Gonzalez, D.; García-Reyes, J.F.; Dernovics, M. Monitoring the degradation of atropine and scopolamine in soil after spiking with naturally contaminated organic millet. Sci. Total Environ. 2018, 625, 1088–1092. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Blanco, R.; Moreno-González, D.; Nortes-Méndez, R.; García-Reyes, J.F.; Molina-Díaz, A.; Gilbert-López, B. Experimental and theoretical determination of pesticide processing factors to model their behavior during virgin olive oil production. Food Chem. 2018, 239, 9–16. [Google Scholar] [CrossRef]
- Hu, Y.N.; Peng, J.; Liu, Y.X.; Tian, L. Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: A scenario approach in Erhai Lake Basin, southwest China. Sci. Total Environ. 2018, 625, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Borsato, E.; Tarolli, P.; Marinello, F. Sustainable patterns of main agricultural products combining different footprint parameters. J. Cleaner Prod. 2018, 179, 357–367. [Google Scholar] [CrossRef]
- Ozturk, I. Sustainability in the food-energy-water nexus: Evidence from BRICS (Brazil, the Russian Federation, India, China, and South Africa) countries. Energy 2015, 93, 999–1010. [Google Scholar] [CrossRef]
- Yu, K.B.; Ogourtsov, S.G.; Belenky, V.G.; Maslenikov, A.B.; Omar, A.S. Accurate microwave resonant method for complex permittivity measurements of liquids [biological]. IEEE Trans. Microw. Theory Tech. 2000, 48, 2159–2164. [Google Scholar]
- Chretiennot, T.; Dubuc, D.; Grenier, K. A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions. IEEE Trans. Microw. Theory Tech. 2012, 61, 972–978. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Jaruwongrungsee, K.; Tuantranont, A.; Fumeaux, C.; Abbott, D. Metamaterial-based microfluidic sensor for dielectric characterization. Sens. Actuators A: Phys. 2013, 189, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Korostynska, O.; Blakey, R.; Mason, A.; Al-Shamma’a, A. Novel method for vegetable oil type verification based on real-time microwave sensing. Sens. Actuators A: Phys. 2013, 202, 211–216. [Google Scholar] [CrossRef]
- Daily, M.E.; Glover, B.B.; Son, S.F.; Groven, L.J. X-band microwave properties and ignition predictions of neat explosives. Propellants Explos. Pyrotech. 2013, 38, 810–817. [Google Scholar] [CrossRef]
- Trabelsi, S.; Nelson, S.O. Microwave sensing of quality attributes of agricultural and food products. IEEE Instrum. Meas. Mag. 2016, 19, 36–41. [Google Scholar] [CrossRef]
- Venkatesh, M.S.; Raghavan, G.S.V. An overview of microwave processing and dielectric properties of agri-food materials. Biosyst. Eng. 2004, 88, 1–18. [Google Scholar] [CrossRef]
- Mabrook, M.F.; Petty, M.C. A novel technique for the detection of added water to full fat milk using single frequency admittance measurements. Sens. Actuators B 2003, 96, 215–218. [Google Scholar] [CrossRef]
- Rydosz, A.; Maciak, E.; Wincza, K.; Gruszczynski, S. Microwave based sensors with phthalocyanine films for acetone, ethanol and methanol detection. Sens. Actuators B 2016, 237, 876–886. [Google Scholar] [CrossRef]
- Abduljabar, A.A.; Porch, A.; Barrow, D.A. Real-time measurements of size, speed, and dielectric property of liquid segments using a microwave microfluidic sensor. IEEE MTT-S Int. Micro. Symp. 2014, 1–4. [Google Scholar]
- Kapilevich, B.; Member, S.; Litvak, B. Optimized microwave sensor for online concentration measurements of binary liquid mixtures. IEEE Sens. J. 2011, 11, 2611–2616. [Google Scholar] [CrossRef]
- Gennarelli, G.; Romeo, S.; Scarfì, M.R.; Soldovieri, F. A microwave resonant sensor for concentration measurements of liquid solutions. IEEE Sens. J. 2013, 13, 1857–1864. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Sohrabi, A.; Shaibani, P.M.; Daneshm, M.; Thundat, T. Detection of volatile organic compounds using microwave sensors. IEEE Sens. J. 2014, 15, 248–254. [Google Scholar] [CrossRef]
- Julrat, S.; Trabelsi, S. Portable six-port reflectometer for determining moisture content of biomass material. IEEE Sens. J. 2017, 17, 4814–4819. [Google Scholar] [CrossRef]
- Naqui, J.; Martín, F. Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors. IEEE Trans. Microwave Theory Tech. 2013, 61, 4700–4713. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Thundat, T.; Daneshmand, M. High resolution microwave microstrip resonator for sensing applications. Sens. Actuators A: Phys 2015, 233, 224–230. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Fayaz, M.; Goldthorp, J.; Abdolrazzaghi, M.; Hashisho, Z.; Daneshmand, M. Microbead-assisted high resolution microwave planar ring resonator for organic-vapor sensing. Appl. Phys. Lett. 2015, 106, 12868–12882. [Google Scholar] [CrossRef]
- Naqui, J.; Durán-Sindreu, M.; Martín, F. Novel sensors based on the symmetry properties of split ring resonators (SRRs). Sensors 2011, 11, 7545–7553. [Google Scholar] [CrossRef] [PubMed]
- Naqui, J.; Durán-Sindreu, M.; Martín, F. Alignment and position sensors based on split ring resonators. Sensors 2012, 12, 11790–11797. [Google Scholar] [CrossRef]
- Horestani, A.; Fumeaux, C.; Al-Sarawi, S.; Abbott, D. Displacement sensor based on diamond-shaped tapered split ring resonator. IEEE Sens. J. 2013, 13, 1153–1160. [Google Scholar] [CrossRef]
- Schueler, M.; Mandel, C.; Puentes, M.; Jakoby, R. Metamaterial inspired microwave sensors. IEEE Microw. Mag. 2012, 13, 57–68. [Google Scholar] [CrossRef]
- Staszek, K.; Piekarz, I.; Sorocki, J.; Koryciak, S.; Wincza, K.; Gruszczynski, S. Low-cost microwave vector system for liquid properties monitoring. IEEE Trans. Ind. Electron. 2018, 65, 1665–1674. [Google Scholar] [CrossRef]
- Ng, S.K.; Gibson, A.; Parkinson, G.; Haigh, A.; Ainsworth, P.; Plunkett, A. Bimodal method of determining fat and salt content in beef products by microwave techniques. IEEE Trans. Instrum. Meas. 2009, 58, 3778–3787. [Google Scholar] [CrossRef]
- Yee, L.K.; Abbas, Z.; Jusoh, M.A.; Yeow, Y.K.; Meng, C.E. Determination of moisture content in oil palm fruits using a five-port reflectometer. Sensors 2011, 11, 4073–4085. [Google Scholar] [CrossRef]
- Zarifi, M.H.; Rahimi, M.; Daneshmand, M.; Thundat, T. Microwave ring resonator-based non-contact interface sensor for oil sands applications. Sens. Actuators B 2016, 224, 632–639. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens. J. 2014, 14, 1345–1351. [Google Scholar] [CrossRef]
- Abdolrazzaghi, M.; Zarifi, M.H.; Daneshmand, M. Wireless communication in feedback-assisted active sensors. IEEE Sens. J. 2016, 16, 8151–8157. [Google Scholar] [CrossRef]
- Joffe, R.; Kamenetskii, E.O.; Shavit, R. Novel microwave near-field sensors for material characterization, biology, and nanotechnology. J. Appl. Phys. 2013, 113, 063912. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, M.; Fischer, G.; Weigel, R.; Kissinger, D. Microwave-based noninvasive concentration measurements for biomedical applications. IEEE Trans. Microwave Theory Tech. 2013, 61, 2195–2204. [Google Scholar] [CrossRef]
- Baena, J.D.; Bonache, J.; Martin, F.; Sillero, R.M.; Falcone, F.; Lopetegi, T.; Laso, M.A.G.; Garcia-Garcia, J.; Gil, I.; Portillo, M.F.; et al. Equivalent circuit models for split ring resonators and complementary split ring resonators coupled to planar transmission lines. IEEE Trans. Microwave Theory Tech. 2005, 53, 1451–1461. [Google Scholar] [CrossRef]
- Vargas, M.P. Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Abdolrazzaghi, M.; Daneshmand, M.; Ashwin K., I. Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling. IEEE Trans. Microwave Theory Tech. 2018, 66, 1843–1855. [Google Scholar] [CrossRef]
- Wiltshire, B.D.; Zarifi, M.H. 3-D Printing Microfluidic Channels with Embedded Planar Microwave Resonators for RFID and Liquid Detection. IEEE Microwave Wireless Compon. Lett. 2019, 29, 65–67. [Google Scholar] [CrossRef]
- Garcia, A.; Torres, J.L.; de Blas, M.; de Francisco, A.; Illanes, R. Dielectric characteristics of grape juice and wine. Biosystems Eng. 2004, 88, 343–349. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, X.; Liu, H.; Yue, R.; Wang, S. Effects of milk concentration and freshness on microwave dielectric properties. J. Food Eng. 2010, 99, 344–350. [Google Scholar] [CrossRef]
- Lim, S.; Kim, C.Y. Simultaneous Measurement of Thickness and Permittivity by Means of the Resonant Frequency Fitting of a Microstrip Line Ring Resonator. IEEE Microwave Wireless Compon. Lett. 2018, 28, 539–541. [Google Scholar] [CrossRef]
- Bao, J.Z.; Swicord, M.L.; Davis, C.C. Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol. J. Chem. Phys. 1996, 104, 4441–4450. [Google Scholar] [CrossRef]
Results | f (GHz) | Notch Depth |
---|---|---|
Simulated | 2.400 | −14.05 dB |
Measured | 2.400 | −13.47 dB |
Results | f (GHz) | Notch Depth |
---|---|---|
Air | 2.400 | −13.47 dB |
Position A | 2.015 | −6.44 dB |
Position B | 2.050 | −6.56 dB |
Position C | 1.875 | −4.89 dB |
Position D | 1.945 | −5.73 dB |
Sensors | Permittivity Varying Range or Ethanol Concentration in Water (%) | Resonant Frequency Shift |
---|---|---|
[31] | 0%–100% concentration | 400 MHz |
[37] | From 11 to 60 | 400 MHz |
[38] | 3%–100% concentration (almost the same as we used) | 230 MHz |
ours | From 11 to 60 (0%–100% concentration) | 490 MHz |
Liquid Sample | f (GHz) | ||
---|---|---|---|
Deionized water | 1.595 | 72 | 71.70 |
Red wine | 1.630 | 66 | 66.62 |
Milk | 1.665 | 62 | 61.71 |
Yoghourt | 1.700 | 57 | 56.96 |
Peanut oil | 2.295 | 2 | 2.01 |
Concentration (%) | f (GHz) | ||
---|---|---|---|
10 | 1.665 | 60 | 59.65 |
30 | 1.700 | 55 | 55.46 |
50 | 1.810 | 43 | 43.02 |
70 | 1.840 | 40 | 39.82 |
100 | 2.155 | 11 | 11.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Ruan, C.; Haq, T.u.; Chen, K. High-Sensitivity Microwave Sensor for Liquid Characterization Using a Complementary Circular Spiral Resonator. Sensors 2019, 19, 787. https://doi.org/10.3390/s19040787
Zhang X, Ruan C, Haq Tu, Chen K. High-Sensitivity Microwave Sensor for Liquid Characterization Using a Complementary Circular Spiral Resonator. Sensors. 2019; 19(4):787. https://doi.org/10.3390/s19040787
Chicago/Turabian StyleZhang, Xingyun, Cunjun Ruan, Tanveer ul Haq, and Kanglong Chen. 2019. "High-Sensitivity Microwave Sensor for Liquid Characterization Using a Complementary Circular Spiral Resonator" Sensors 19, no. 4: 787. https://doi.org/10.3390/s19040787
APA StyleZhang, X., Ruan, C., Haq, T. u., & Chen, K. (2019). High-Sensitivity Microwave Sensor for Liquid Characterization Using a Complementary Circular Spiral Resonator. Sensors, 19(4), 787. https://doi.org/10.3390/s19040787