Measurement of Human Gait Symmetry using Body Surface Normals Extracted from Depth Maps
Abstract
:1. Introduction
2. Related Work
3. Depth-Based Geometric Feature
3.1. Human Body Segmentation
3.2. 3D Reprojection
3.3. Cloud of Normal Vectors
3.4. Silhouette-Based Region Separation
3.5. Angle Conversion
3.5.1. Transverse Plane
3.5.2. Sagittal Plane
3.5.3. Coronal Plane
3.5.4. Feature Representation
4. Gait Symmetry Measurement
4.1. Basic Measurement
4.2. Frame-Based Index
4.3. Segment-Based Index
5. Experiments
5.1. Dataset
5.2. Evaluation Scheme
5.3. Experimental Results
5.4. Combination of Gait Indices
5.5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | Area Under Curve |
ROC | Receiver Operating Characteristic |
HMM | Hidden Markov Model |
MGCM | Mean Gait Cycle Model |
MDI | Mean Depth Image |
References
- Böhm, H.; Döderlein, L. Gait asymmetries in children with cerebral palsy: Do they deteriorate with running? Gait Posture 2012, 35, 322–327. [Google Scholar] [CrossRef]
- Patterson, K.K.; Gage, W.H.; Brooks, D.; Black, S.E.; McIlroy, W.E. Evaluation of gait symmetry after stroke: A comparison of current methods and recommendations for standardization. Gait Posture 2010, 31, 241–246. [Google Scholar] [CrossRef]
- James, P.; Nicol, A.; Hamblen, D. A comparison of gait symmetry and hip movements in the assessment of patients with monarticular hip arthritis. Clin. Biomech. 1994, 9, 162–166. [Google Scholar] [CrossRef]
- Gurney, B. Leg length discrepancy. Gait Posture 2002, 15, 195–206. [Google Scholar] [CrossRef]
- Trojaniello, D.; Ravaschio, A.; Hausdorff, J.M.; Cereatti, A. Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: Application to elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects. Gait Posture 2015, 42, 310–316. [Google Scholar] [CrossRef]
- Loper, M.; Mahmood, N.; Black, M.J. MoSh: Motion and Shape Capture from Sparse Markers. ACM Trans. Graph. 2014, 33, 220. [Google Scholar] [CrossRef]
- Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A. Real-time human pose recognition in parts from single depth images. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1297–1304. [Google Scholar]
- Shotton, J.; Girshick, R.; Fitzgibbon, A.; Sharp, T.; Cook, M.; Finocchio, M.; Moore, R.; Kohli, P.; Criminisi, A.; Kipman, A.; et al. Efficient Human Pose Estimation from Single Depth Images. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2821–2840. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Huynh, H.H.; Meunier, J. Skeleton-Based Abnormal Gait Detection. Sensors 2016, 16, 1792. [Google Scholar] [CrossRef]
- Du, Y.; Wang, W.; Wang, L. Hierarchical recurrent neural network for skeleton based action recognition. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1110–1118. [Google Scholar]
- Auvinet, E.; Multon, F.; Meunier, J. New Lower-Limb Gait Asymmetry Indices Based on a Depth Camera. Sensors 2015, 15, 4605–4623. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.N.; Huynh, H.H.; Meunier, J. Assessment of gait normality using a depth camera and mirrors. In Proceedings of the 2018 IEEE EMBS International Conference on Biomedical Health Informatics (BHI), Las Vegas, NV, USA, 4–7 March 2018; pp. 37–41. [Google Scholar]
- Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011. [Google Scholar]
- Zhou, K.; Hou, Q.; Wang, R.; Guo, B. Real-time KD-tree Construction on Graphics Hardware. ACM Trans. Graph. 2008, 27, 126. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Huynh, H.H.; Meunier, J. 3D Reconstruction With Time-of-Flight Depth Camera and Multiple Mirrors. IEEE Access 2018, 6, 38106–38114. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Huynh, H.H.; Meunier, J. Human gait symmetry assessment using a depth camera and mirrors. Comput. Biol. Med. 2018, 101, 174–183. [Google Scholar] [CrossRef] [PubMed]
- McGinley, J.L.; Baker, R.; Wolfe, R.; Morris, M.E. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture 2009, 29, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Dey, T.K.; Li, G.; Sun, J. Normal estimation for point clouds: A comparison study for a Voronoi based method. In Proceedings of the Eurographics/IEEE VGTC Symposium Point-Based Graphics, Stony Brook, NY, USA, 21–22 June 2005; pp. 39–46. [Google Scholar]
- Zhao, H.; Yuan, D.; Zhu, H.; Yin, J. 3-D point cloud normal estimation based on fitting algebraic spheres. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–25 September 2016; pp. 2589–2592. [Google Scholar]
Test Data | Index Estimation | Transverse Plane | Sagittal Plane | Coronal Plane |
---|---|---|---|---|
All 9 subjects | frame-based | 0.816 | 0.870 | 0.716 |
segment-based | 0.895 | 0.966 | 0.832 | |
Leave-one-out | frame-based | 0.819 | 0.931 | 0.722 |
segment-based | 0.903 | 0.958 | 0.819 |
Test Data | Index Estimation | Transverse Plane | Sagittal Plane | Coronal Plane |
---|---|---|---|---|
All 9 subjects | frame-based | 0.707 | 0.727 | 0.514 |
segment-based | 0.770 | 0.949 | 0.785 | |
Leave-one-out | frame-based | 0.722 | 0.833 | 0.500 |
segment-based | 0.806 | 0.958 | 0.819 |
Method | Input | All 9 Subjects | Leave-One-Out |
---|---|---|---|
HMM [9] † | skeleton | - | 0.778 |
MGCM [11] | depth map | 0.830 | 0.875 |
HMM [12] | depth map | - | 0.569 |
Correlation [12] | silhouette | - | 0.903 |
HMM + Correlation [12] | combination | - | 0.917 |
Ours (lower body) | depth map | 0.949 | 0.958 |
Ours (full body) | depth map | 0.966 | 0.958 |
& | & | & | & & | ||||
---|---|---|---|---|---|---|---|
Full body | 0.903 | 0.958 | 0.819 | 0.986 | 0.972 | 0.903 | 0.986 |
Lower body | 0.806 | 0.958 | 0.819 | 0.958 | 0.958 | 0.792 | 0.958 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-N.; Huynh, H.-H.; Meunier, J. Measurement of Human Gait Symmetry using Body Surface Normals Extracted from Depth Maps. Sensors 2019, 19, 891. https://doi.org/10.3390/s19040891
Nguyen T-N, Huynh H-H, Meunier J. Measurement of Human Gait Symmetry using Body Surface Normals Extracted from Depth Maps. Sensors. 2019; 19(4):891. https://doi.org/10.3390/s19040891
Chicago/Turabian StyleNguyen, Trong-Nguyen, Huu-Hung Huynh, and Jean Meunier. 2019. "Measurement of Human Gait Symmetry using Body Surface Normals Extracted from Depth Maps" Sensors 19, no. 4: 891. https://doi.org/10.3390/s19040891
APA StyleNguyen, T. -N., Huynh, H. -H., & Meunier, J. (2019). Measurement of Human Gait Symmetry using Body Surface Normals Extracted from Depth Maps. Sensors, 19(4), 891. https://doi.org/10.3390/s19040891